IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v157y2023icp308-334.html
   My bibliography  Save this article

Bridging the first and last passage times for Lévy models

Author

Listed:
  • Landriault, David
  • Li, Bin
  • Lkabous, Mohamed Amine
  • Wang, Zijia

Abstract

Research in classical ruin theory has largely focused on the first passage time analysis of a surplus process below level 0. Recently, inspired by numerous applications in finance, physics, and optimization, there has been an accrued interest in the analysis of the last passage time (below level 0). In this paper, we aim to bridge the first and the last passage times and unify their analyses. For this purpose, we consider negative excursions of an underlying process in two manners, cumulative and noncumulative, and introduce two random times, denoted by sr and lr, where r can be interpreted as a measure of a decision maker’s tolerance to negative excursions. Our analysis focuses on spectrally negative Lévy processes, for which we derive the Laplace transform and some distributional quantities of these random times in terms of standard scale functions. An application to credit risk management is considered at the end.

Suggested Citation

  • Landriault, David & Li, Bin & Lkabous, Mohamed Amine & Wang, Zijia, 2023. "Bridging the first and last passage times for Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 308-334.
  • Handle: RePEc:eee:spapps:v:157:y:2023:i:c:p:308-334
    DOI: 10.1016/j.spa.2022.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414922002630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2022.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chunhao Cai & Bo Li, 2018. "Occupation Times of Intervals Until Last Passage Times for Spectrally Negative Lévy Processes," Journal of Theoretical Probability, Springer, vol. 31(4), pages 2194-2215, December.
    2. R. J. Elliott & M. Jeanblanc & M. Yor, 2000. "On Models of Default Risk," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 179-195, April.
    3. Loeffen, R. & Palmowski, Z. & Surya, B.A., 2018. "Discounted penalty function at Parisian ruin for Lévy insurance risk process," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 190-197.
    4. Landriault, David & Li, Bin & Shi, Tianxiang & Xu, Di, 2019. "On the distribution of classic and some exotic ruin times," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 38-45.
    5. Loeffen, Ronnie L. & Renaud, Jean-François & Zhou, Xiaowen, 2014. "Occupation times of intervals until first passage times for spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1408-1435.
    6. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    7. Doney, R. A., 1989. "Last exit times for random walks," Stochastic Processes and their Applications, Elsevier, vol. 31(2), pages 321-331, April.
    8. Landriault, David & Renaud, Jean-François & Zhou, Xiaowen, 2011. "Occupation times of spectrally negative Lévy processes with applications," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2629-2641, November.
    9. Guérin, Hélène & Renaud, Jean-François, 2017. "On the distribution of cumulative Parisian ruin," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 116-123.
    10. Christian Paroissin & Landy Rabehasaina, 2015. "First and Last Passage Times of Spectrally Positive Lévy Processes with Application to Reliability," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 351-372, June.
    11. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2020. "On occupation times in the red of Lévy risk models," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 17-26.
    12. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2021. "On the analysis of deep drawdowns for the Lévy insurance risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 147-155.
    13. Ronnie Loeffen & Irmina Czarna & Zbigniew Palmowski, 2011. "Parisian ruin probability for spectrally negative L\'{e}vy processes," Papers 1102.4055, arXiv.org, revised Mar 2013.
    14. Steve Drekic, 2009. "“On the Joint Distributions of the Time to Ruin, the Surplus Prior to Ruin, and the Deficit at Ruin in the Classical Risk Model,” David Landriault and Gordon Willmot, Volume 13, No. 2, 2009," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(3), pages 404-406.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lkabous, Mohamed Amine & Wang, Zijia, 2023. "On the area in the red of Lévy risk processes and related quantities," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 257-278.
    2. Li, Shu & Zhou, Xiaowen, 2022. "The Parisian and ultimate drawdowns of Lévy insurance models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 140-160.
    3. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2021. "On the analysis of deep drawdowns for the Lévy insurance risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 147-155.
    4. Cheung, Eric C.K. & Zhu, Wei, 2023. "Cumulative Parisian ruin in finite and infinite time horizons for a renewal risk process with exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 84-101.
    5. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2020. "On occupation times in the red of Lévy risk models," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 17-26.
    6. Lkabous, Mohamed Amine & Czarna, Irmina & Renaud, Jean-François, 2017. "Parisian ruin for a refracted Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 153-163.
    7. Guérin, Hélène & Renaud, Jean-François, 2017. "On the distribution of cumulative Parisian ruin," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 116-123.
    8. Xiaoqing Liang & Virginia R. Young, 2020. "Minimizing the Probability of Lifetime Exponential Parisian Ruin," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 1036-1064, March.
    9. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    10. Czarna, Irmina & Renaud, Jean-François, 2016. "A note on Parisian ruin with an ultimate bankruptcy level for Lévy insurance risk processes," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 54-61.
    11. Mohamed Amine Lkabous & Irmina Czarna & Jean-Franc{c}ois Renaud, 2016. "Parisian ruin for a refracted L\'evy process," Papers 1603.09324, arXiv.org, revised Mar 2017.
    12. David Landriault & Bin Li & Mohamed Amine Lkabous, 2019. "On occupation times in the red of L\'evy risk models," Papers 1903.03721, arXiv.org, revised Jul 2019.
    13. Landriault, David & Li, Bin & Wong, Jeff T.Y. & Xu, Di, 2018. "Poissonian potential measures for Lévy risk models," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 152-166.
    14. Mohamed Amine Lkabous, 2019. "Poissonian occupation times of spectrally negative L\'evy processes with applications," Papers 1907.09990, arXiv.org.
    15. Mohamed Amine Lkabous, 2019. "A note on Parisian ruin under a hybrid observation scheme," Papers 1907.09993, arXiv.org.
    16. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    17. Lkabous, Mohamed Amine, 2019. "A note on Parisian ruin under a hybrid observation scheme," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 147-157.
    18. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
    19. Cui, Zhenyu & Nguyen, Duy, 2016. "Omega diffusion risk model with surplus-dependent tax and capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 150-161.
    20. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:157:y:2023:i:c:p:308-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.