IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v27y2014i4d10.1007_s10959-013-0501-4.html
   My bibliography  Save this article

Occupation Times of Refracted Lévy Processes

Author

Listed:
  • A. E. Kyprianou

    (University of Bath)

  • J. C. Pardo

    (Centro de Investigación en Matemáticas)

  • J. L. Pérez

    (ITAM)

Abstract

A refracted Lévy process is a Lévy process whose dynamics change by subtracting off a fixed linear drift (of suitable size) whenever the aggregate process is above a pre-specified level. More precisely, whenever it exists, a refracted Lévy process is described by the unique strong solution to the stochastic differential equation $$\begin{aligned} {\mathrm{d}}U_t=-\delta \mathbf 1 _{\{U_t>b\}}{\mathrm{d}}t +{\mathrm{d}}X_t,\quad t\ge 0 \end{aligned}$$ d U t = − δ 1 { U t > b } d t + d X t , t ≥ 0 where $$X=(X_t, t\ge 0)$$ X = ( X t , t ≥ 0 ) is a Lévy process with law $$\mathbb{P }$$ P and $$b,\delta \in \mathbb{R }$$ b , δ ∈ R such that the resulting process $$U$$ U may visit the half line $$(b,\infty )$$ ( b , ∞ ) with positive probability. In this paper, we consider the case that $$X$$ X is spectrally negative and establish a number of identities for the following functionals $$\begin{aligned} \int \limits _0^\infty \mathbf 1 _{\{U_t c\}$$ κ c + = inf { t ≥ 0 : U t > c } and $$\kappa ^-_a=\inf \{t\ge 0: U_t

Suggested Citation

  • A. E. Kyprianou & J. C. Pardo & J. L. Pérez, 2014. "Occupation Times of Refracted Lévy Processes," Journal of Theoretical Probability, Springer, vol. 27(4), pages 1292-1315, December.
  • Handle: RePEc:spr:jotpro:v:27:y:2014:i:4:d:10.1007_s10959-013-0501-4
    DOI: 10.1007/s10959-013-0501-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-013-0501-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-013-0501-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florin Avram & Zbigniew Palmowski & Martijn R. Pistorius, 2007. "On the optimal dividend problem for a spectrally negative L\'{e}vy process," Papers math/0702893, arXiv.org.
    2. Landriault, David & Renaud, Jean-François & Zhou, Xiaowen, 2011. "Occupation times of spectrally negative Lévy processes with applications," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2629-2641, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingchun Deng & Xuan Huang & Ya Huang & Xuyan Xiang & Jieming Zhou, 2020. "n-Dimensional Laplace Transforms of Occupation Times for Pre-Exit Diffusion Processes," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(1), pages 345-360, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Danping & Li, Dongchen & Young, Virginia R., 2017. "Optimality of excess-loss reinsurance under a mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 82-89.
    2. Danping Li & Dongchen Li & Virginia R. Young, 2017. "Optimality of Excess-Loss Reinsurance under a Mean-Variance Criterion," Papers 1703.01984, arXiv.org, revised Mar 2017.
    3. Jean-François Renaud, 2019. "De Finetti’s Control Problem with Parisian Ruin for Spectrally Negative Lévy Processes," Risks, MDPI, vol. 7(3), pages 1-11, July.
    4. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, September.
    5. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    6. Ewa Marciniak & Zbigniew Palmowski, 2018. "On the Optimal Dividend Problem in the Dual Model with Surplus-Dependent Premiums," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 533-552, November.
    7. Yin, Chuancun & Wen, Yuzhen, 2013. "Optimal dividend problem with a terminal value for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 769-773.
    8. Noba, Kei, 2021. "On the optimality of double barrier strategies for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 73-102.
    9. Cui, Zhenyu & Nguyen, Duy, 2016. "Omega diffusion risk model with surplus-dependent tax and capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 150-161.
    10. Zhenyu Cui, 2014. "Omega risk model with tax," Papers 1403.7680, arXiv.org.
    11. Kazutoshi Yamazaki, 2017. "Inventory Control for Spectrally Positive Lévy Demand Processes," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 212-237, January.
    12. Guérin, Hélène & Renaud, Jean-François, 2017. "On the distribution of cumulative Parisian ruin," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 116-123.
    13. Qingpei Zang & Lixin Zhang, 2019. "Asymptotic Behaviour of the Trajectory Fitting Estimator for Reflected Ornstein–Uhlenbeck Processes," Journal of Theoretical Probability, Springer, vol. 32(1), pages 183-201, March.
    14. Baurdoux, Erik J. & Yamazaki, Kazutoshi, 2015. "Optimality of doubly reflected Lévy processes in singular control," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2727-2751.
    15. Irmina Czarna & Zbigniew Palmowski, 2014. "Dividend Problem with Parisian Delay for a Spectrally Negative Lévy Risk Process," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 239-256, April.
    16. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    17. Yingchun Deng & Xuan Huang & Ya Huang & Xuyan Xiang & Jieming Zhou, 2020. "n-Dimensional Laplace Transforms of Occupation Times for Pre-Exit Diffusion Processes," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(1), pages 345-360, March.
    18. Kathrin Glau, 2015. "Feynman-Kac formula for L\'evy processes with discontinuous killing rate," Papers 1502.07531, arXiv.org, revised Nov 2015.
    19. Chunhao Cai & Bo Li, 2018. "Occupation Times of Intervals Until Last Passage Times for Spectrally Negative Lévy Processes," Journal of Theoretical Probability, Springer, vol. 31(4), pages 2194-2215, December.
    20. Goreac, Dan & Li, Juan & Wang, Pangbo & Xu, Boxiang, 2024. "Linearisation techniques and the dual algorithm for a class of mixed singular/continuous control problems in reinsurance. Part II: Numerical aspects," Applied Mathematics and Computation, Elsevier, vol. 473(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:27:y:2014:i:4:d:10.1007_s10959-013-0501-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.