IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v7y2019i3p73-d245263.html
   My bibliography  Save this article

De Finetti’s Control Problem with Parisian Ruin for Spectrally Negative Lévy Processes

Author

Listed:
  • Jean-François Renaud

    (Département de mathématiques, Université du Québec à Montréal (UQAM), Montréal, QC H2X 3Y7, Canada)

Abstract

We consider de Finetti’s stochastic control problem when the (controlled) process is allowed to spend time under the critical level. More precisely, we consider a generalized version of this control problem in a spectrally negative Lévy model with exponential Parisian ruin. We show that, under mild assumptions on the Lévy measure, an optimal strategy is formed by a barrier strategy and that this optimal barrier level is always less than the optimal barrier level when classical ruin is implemented. In addition, we give necessary and sufficient conditions for the barrier strategy at level zero to be optimal.

Suggested Citation

  • Jean-François Renaud, 2019. "De Finetti’s Control Problem with Parisian Ruin for Spectrally Negative Lévy Processes," Risks, MDPI, vol. 7(3), pages 1-11, July.
  • Handle: RePEc:gam:jrisks:v:7:y:2019:i:3:p:73-:d:245263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/7/3/73/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/7/3/73/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dickson,David C. M., 2016. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9781107154605, October.
    2. Biffis, Enrico & Kyprianou, Andreas E., 2010. "A note on scale functions and the time value of ruin for Lévy insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 85-91, February.
    3. Irmina Czarna & Zbigniew Palmowski, 2014. "Dividend Problem with Parisian Delay for a Spectrally Negative Lévy Risk Process," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 239-256, April.
    4. Florin Avram & Zbigniew Palmowski & Martijn R. Pistorius, 2007. "On the optimal dividend problem for a spectrally negative L\'{e}vy process," Papers math/0702893, arXiv.org.
    5. Loeffen, Ronnie L. & Renaud, Jean-François, 2010. "De Finetti's optimal dividends problem with an affine penalty function at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 98-108, February.
    6. F. Avram & Z. Palmowski & M. R. Pistorius, 2011. "On Gerber-Shiu functions and optimal dividend distribution for a L\'{e}vy risk process in the presence of a penalty function," Papers 1110.4965, arXiv.org, revised Jun 2015.
    7. Dickson,David C. M., 2010. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9780521176750.
    8. Dassios, Angelos & Wu, Shanle, 2009. "On barrier strategy dividends with Parisian implementation delay for classical surplus processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 195-202, October.
    9. Landriault, David & Renaud, Jean-François & Zhou, Xiaowen, 2011. "Occupation times of spectrally negative Lévy processes with applications," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2629-2641, November.
    10. Albrecher, Hansjörg & Cheung, Eric C.K. & Thonhauser, Stefan, 2011. "Randomized Observation Periods for the Compound Poisson Risk Model: Dividends," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 645-672, November.
    11. Hansjoerg Albrecher & Jevgenijs Ivanovs, 2013. "Power identities for L\'evy risk models under taxation and capital injections," Papers 1310.3052, arXiv.org, revised Mar 2014.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brinker, Leonie Violetta & Eisenberg, Julia, 2021. "Dividend optimisation: A behaviouristic approach," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 202-224.
    2. Renaud, Jean-François, 2024. "A note on the optimal dividends problem with transaction costs in a spectrally negative Lévy model with Parisian ruin," Statistics & Probability Letters, Elsevier, vol. 206(C).
    3. Ran Xu & Wenyuan Wang & Jose Garrido, 2022. "Optimal Dividend Strategy Under Parisian Ruin with Affine Penalty," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1385-1409, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ran Xu & Wenyuan Wang & Jose Garrido, 2022. "Optimal Dividend Strategy Under Parisian Ruin with Affine Penalty," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1385-1409, September.
    2. Landriault, David & Li, Bin & Wong, Jeff T.Y. & Xu, Di, 2018. "Poissonian potential measures for Lévy risk models," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 152-166.
    3. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    4. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    5. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    6. Ewa Marciniak & Zbigniew Palmowski, 2018. "On the Optimal Dividend Problem in the Dual Model with Surplus-Dependent Premiums," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 533-552, November.
    7. Noba, Kei, 2021. "On the optimality of double barrier strategies for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 73-102.
    8. Cui, Zhenyu & Nguyen, Duy, 2016. "Omega diffusion risk model with surplus-dependent tax and capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 150-161.
    9. Zhenyu Cui, 2014. "Omega risk model with tax," Papers 1403.7680, arXiv.org.
    10. Irmina Czarna & Zbigniew Palmowski, 2014. "Dividend Problem with Parisian Delay for a Spectrally Negative Lévy Risk Process," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 239-256, April.
    11. Egami, Masahiko & Leung, Tim & Yamazaki, Kazutoshi, 2013. "Default swap games driven by spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 347-384.
    12. Feng, Runhuan & Shimizu, Yasutaka, 2014. "Potential measures for spectrally negative Markov additive processes with applications in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 11-26.
    13. Brinker, Leonie Violetta & Eisenberg, Julia, 2021. "Dividend optimisation: A behaviouristic approach," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 202-224.
    14. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    15. Bayraktar, Erhan & Kyprianou, Andreas E. & Yamazaki, Kazutoshi, 2013. "On Optimal Dividends In The Dual Model," ASTIN Bulletin, Cambridge University Press, vol. 43(3), pages 359-372, September.
    16. Landriault, David & Li, Bin & Li, Shu, 2015. "Analysis of a drawdown-based regime-switching Lévy insurance model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 98-107.
    17. Hernández, Camilo & Junca, Mauricio & Moreno-Franco, Harold, 2018. "A time of ruin constrained optimal dividend problem for spectrally one-sided Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 57-68.
    18. Zhang, Aili & Chen, Ping & Li, Shuanming & Wang, Wenyuan, 2022. "Risk modelling on liquidations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    19. Ewa Marciniak & Zbigniew Palmowski, 2016. "On the Optimal Dividend Problem in the Dual Model with Surplus-Dependent Premiums," Papers 1605.04584, arXiv.org.
    20. Wenyuan Wang & Xiang Yu & Xiaowen Zhou, 2021. "On optimality of barrier dividend control under endogenous regime switching with application to Chapter 11 bankruptcy," Papers 2108.01800, arXiv.org, revised Nov 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:3:p:73-:d:245263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.