IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v51y2020i1d10.1007_s13226-020-0404-x.html
   My bibliography  Save this article

n-Dimensional Laplace Transforms of Occupation Times for Pre-Exit Diffusion Processes

Author

Listed:
  • Yingchun Deng

    (Hunan Normal University)

  • Xuan Huang

    (Hunan Normal University)

  • Ya Huang

    (Hunan Normal University)

  • Xuyan Xiang

    (Hunan University of Arts and Science
    Hunan Province Cooperative Innovation Center for the Construction and Development of Dongting Lake Ecological Economic Zone)

  • Jieming Zhou

    (Hunan Normal University)

Abstract

In this paper, we adopt a Poisson approach to find Laplace transforms of joint occupation times over n disjoint intervals for pre-exit diffusion processes. Then we generalize previous result for the 2-dimensional case and the 3-dimensional case.

Suggested Citation

  • Yingchun Deng & Xuan Huang & Ya Huang & Xuyan Xiang & Jieming Zhou, 2020. "n-Dimensional Laplace Transforms of Occupation Times for Pre-Exit Diffusion Processes," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(1), pages 345-360, March.
  • Handle: RePEc:spr:indpam:v:51:y:2020:i:1:d:10.1007_s13226-020-0404-x
    DOI: 10.1007/s13226-020-0404-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-020-0404-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-020-0404-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    2. Li, Yingqiu & Zhou, Xiaowen, 2014. "On pre-exit joint occupation times for spectrally negative Lévy processes," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 48-55.
    3. Jin, Can & Li, Shuanming & Wu, Xueyuan, 2016. "On the occupation times in a delayed Sparre Andersen risk model with exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 304-316.
    4. Xuebing Kuang & Xiaowen Zhou, 2017. "n -Dimensional Laplace Transforms of Occupation Times for Spectrally Negative Lévy Processes," Risks, MDPI, vol. 5(1), pages 1-14, January.
    5. A. E. Kyprianou & J. C. Pardo & J. L. Pérez, 2014. "Occupation Times of Refracted Lévy Processes," Journal of Theoretical Probability, Springer, vol. 27(4), pages 1292-1315, December.
    6. Landriault, David & Renaud, Jean-François & Zhou, Xiaowen, 2011. "Occupation times of spectrally negative Lévy processes with applications," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2629-2641, November.
    7. Ning Cai & Nan Chen & Xiangwei Wan, 2010. "Occupation Times of Jump-Diffusion Processes with Double Exponential Jumps and the Pricing of Options," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 412-437, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan Huang & Jieming Zhou, 2022. "General Draw-Down Times for Refracted Spectrally Negative Lévy Processes," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 875-891, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuebing Kuang & Xiaowen Zhou, 2017. "n -Dimensional Laplace Transforms of Occupation Times for Spectrally Negative Lévy Processes," Risks, MDPI, vol. 5(1), pages 1-14, January.
    2. Li, Yingqiu & Zhou, Xiaowen & Zhu, Na, 2015. "Two-sided discounted potential measures for spectrally negative Lévy processes," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 67-76.
    3. Li, Bo & Palmowski, Zbigniew, 2018. "Fluctuations of Omega-killed spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3273-3299.
    4. Jin, Can & Li, Shuanming & Wu, Xueyuan, 2016. "On the occupation times in a delayed Sparre Andersen risk model with exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 304-316.
    5. Li, Yingqiu & Wei, Yushao & Peng, Zhaohui, 2021. "Occupation times for spectrally negative Lévy processes on the last exit time," Statistics & Probability Letters, Elsevier, vol. 175(C).
    6. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    7. David Landriault & Bin Li & Mohamed Amine Lkabous, 2019. "On occupation times in the red of L\'evy risk models," Papers 1903.03721, arXiv.org, revised Jul 2019.
    8. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2021. "On the analysis of deep drawdowns for the Lévy insurance risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 147-155.
    9. Mohamed Amine Lkabous, 2019. "Poissonian occupation times of spectrally negative L\'evy processes with applications," Papers 1907.09990, arXiv.org.
    10. Zhou, Jiang & Wu, Lan, 2015. "The time of deducting fees for variable annuities under the state-dependent fee structure," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 125-134.
    11. Mohamed Amine Lkabous, 2019. "A note on Parisian ruin under a hybrid observation scheme," Papers 1907.09993, arXiv.org.
    12. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2020. "On occupation times in the red of Lévy risk models," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 17-26.
    13. Wenyuan Wang & Xiaowen Zhou, 2019. "Potential Densities for Taxed Spectrally Negative Lévy Risk Processes," Risks, MDPI, vol. 7(3), pages 1-11, August.
    14. Lan Wu & Jiang Zhou & Shuang Yu, 2017. "Occupation Times of General Lévy Processes," Journal of Theoretical Probability, Springer, vol. 30(4), pages 1565-1604, December.
    15. Li, Yingqiu & Zhou, Xiaowen, 2014. "On pre-exit joint occupation times for spectrally negative Lévy processes," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 48-55.
    16. Li, Shu & Zhou, Xiaowen, 2022. "The Parisian and ultimate drawdowns of Lévy insurance models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 140-160.
    17. Lkabous, Mohamed Amine, 2019. "A note on Parisian ruin under a hybrid observation scheme," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 147-157.
    18. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, December.
    19. Loeffen, Ronnie L. & Renaud, Jean-François & Zhou, Xiaowen, 2014. "Occupation times of intervals until first passage times for spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1408-1435.
    20. Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:51:y:2020:i:1:d:10.1007_s13226-020-0404-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.