IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v121y2011i11p2629-2641.html
   My bibliography  Save this article

Occupation times of spectrally negative Lévy processes with applications

Author

Listed:
  • Landriault, David
  • Renaud, Jean-François
  • Zhou, Xiaowen

Abstract

In this paper, we compute the Laplace transform of occupation times (of the negative half-line) of spectrally negative Lévy processes. Our results are extensions of known results for standard Brownian motion and jump-diffusion processes. The results are expressed in terms of the so-called scale functions of the spectrally negative Lévy process and its Laplace exponent. Applications to insurance risk models are also presented.

Suggested Citation

  • Landriault, David & Renaud, Jean-François & Zhou, Xiaowen, 2011. "Occupation times of spectrally negative Lévy processes with applications," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2629-2641, November.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:11:p:2629-2641
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414911001797
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egidio dos Reis, Alfredo, 1993. "How long is the surplus below zero?," Insurance: Mathematics and Economics, Elsevier, vol. 12(1), pages 23-38, February.
    2. Loeffen, Ronnie L. & Renaud, Jean-François, 2010. "De Finetti's optimal dividends problem with an affine penalty function at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 98-108, February.
    3. Irmina Czarna & Zbigniew Palmowski, 2010. "Ruin probability with Parisian delay for a spectrally negative L\'evy risk process," Papers 1003.4299, arXiv.org, revised Apr 2010.
    4. Romain Biard & Stéphane Loisel & Claudio Macci & Noel Veraverbeke, 2010. "Asymptotic behavior of the finite-time expected time-integrated negative part of some risk processes and optimal reserve allocation," Post-Print hal-00372525, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ronnie Loeffen & Irmina Czarna & Zbigniew Palmowski, 2011. "Parisian ruin probability for spectrally negative L\'{e}vy processes," Papers 1102.4055, arXiv.org, revised Mar 2013.
    2. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    3. Ewa Marciniak & Zbigniew Palmowski, 2018. "On the Optimal Dividend Problem in the Dual Model with Surplus-Dependent Premiums," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 533-552, November.
    4. Yin, Chuancun & Wen, Yuzhen, 2013. "Optimal dividend problem with a terminal value for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 769-773.
    5. Xu, Ran & Woo, Jae-Kyung, 2020. "Optimal dividend and capital injection strategy with a penalty payment at ruin: Restricted dividend payments," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 1-16.
    6. He, Jingmin & Wu, Rong & Zhang, Huayue, 2009. "Total duration of negative surplus for the risk model with debit interest," Statistics & Probability Letters, Elsevier, vol. 79(10), pages 1320-1326, May.
    7. Wagner, Christian, 2002. "Time in the red in a two state Markov model," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 365-372, December.
    8. Irmina Czarna & Zbigniew Palmowski, 2014. "Dividend Problem with Parisian Delay for a Spectrally Negative Lévy Risk Process," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 239-256, April.
    9. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    10. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    11. Cénac P. & Maume-Deschamps V. & Prieur C., 2012. "Some multivariate risk indicators: Minimization by using a Kiefer–Wolfowitz approach to the mirror stochastic algorithm," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 47-72, March.
    12. Ran Xu & Wenyuan Wang & Jose Garrido, 2022. "Optimal Dividend Strategy Under Parisian Ruin with Affine Penalty," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1385-1409, September.
    13. Czarna, Irmina & Pérez, José-Luis & Yamazaki, Kazutoshi, 2018. "Optimality of multi-refraction control strategies in the dual model," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 148-160.
    14. Yitao Yang & Jingmin He & Zhongqin Gao & Bingbing Wang, 2017. "Exit times for the diffusion risk model with debit interest," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1810-1815, November.
    15. Florin Avram & Dan Goreac & Jean-François Renaud, 2019. "The Løkka–Zervos Alternative for a Cramér–Lundberg Process with Exponential Jumps," Risks, MDPI, vol. 7(4), pages 1-9, December.
    16. Irmina Czarna & Zbigniew Palmowski, 2010. "Dividend problem with Parisian delay for a spectrally negative L\'evy risk process," Papers 1004.3310, arXiv.org, revised Oct 2011.
    17. Masahiko Egami & Kazutoshi Yamazaki, 2010. "Solving Optimal Dividend Problems via Phase-Type Fitting Approximation of Scale Functions," Discussion papers e-10-011, Graduate School of Economics Project Center, Kyoto University.
    18. Zhuo Jin & Huafu Liao & Yue Yang & Xiang Yu, 2019. "Optimal Dividend Strategy for an Insurance Group with Contagious Default Risk," Papers 1909.09511, arXiv.org, revised Oct 2020.
    19. Chongrui Zhu, 2022. "On the closed-form expected NPVs of double barrier strategies for regular diffusions," Papers 2206.08922, arXiv.org, revised Dec 2022.
    20. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2015. "Optimal Dividend Strategies for Two Collaborating Insurance Companies," Papers 1505.03980, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:11:p:2629-2641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.