IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v23y2010i1d10.1007_s10959-008-0205-3.html
   My bibliography  Save this article

Some Exponential Inequalities for Positively Associated Random Variables and Rates of Convergence of the Strong Law of Large Numbers

Author

Listed:
  • Guodong Xing

    (Hunan University of Science and Engineering)

  • Shanchao Yang

    (Guangxi Normal University)

Abstract

We present some exponential inequalities for positively associated unbounded random variables. By these inequalities, we obtain the rate of convergence n −1/2 β n log 3/2 n in which β n can be particularly taken as (log log n)1/σ with any σ>2 for the case of geometrically decreasing covariances, which is faster than the corresponding one n −1/2(log log n)1/2log 2 n obtained by Xing, Yang, and Liu in J. Inequal. Appl., doi: 10.1155/2008/385362 (2008) for the case mentioned above, and derive the convergence rate n −1/2 β n log 1/2 n for the above β n under the given covariance function, which improves the relevant one n −1/2(log log n)1/2log n obtained by Yang and Chen in Sci. China, Ser. A 49(1), 78–85 (2006) for associated uniformly bounded random variables. In addition, some moment inequalities are given to prove the main results, which extend and improve some known results.

Suggested Citation

  • Guodong Xing & Shanchao Yang, 2010. "Some Exponential Inequalities for Positively Associated Random Variables and Rates of Convergence of the Strong Law of Large Numbers," Journal of Theoretical Probability, Springer, vol. 23(1), pages 169-192, March.
  • Handle: RePEc:spr:jotpro:v:23:y:2010:i:1:d:10.1007_s10959-008-0205-3
    DOI: 10.1007/s10959-008-0205-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-008-0205-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-008-0205-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roussas, G. G., 1994. "Asymptotic Normality of Random Fields of Positively or Negatively Associated Processes," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 152-173, July.
    2. Ioannides, D. A. & Roussas, G. G., 1999. "Exponential inequality for associated random variables," Statistics & Probability Letters, Elsevier, vol. 42(4), pages 423-431, May.
    3. Roussas, George G., 1995. "Asymptotic normality of a smooth estimate of a random field distribution function under association," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 77-90, July.
    4. Roussas, George G., 1991. "Kernel estimates under association: strong uniform consistency," Statistics & Probability Letters, Elsevier, vol. 12(5), pages 393-403, November.
    5. Oliveira, Paulo Eduardo, 2005. "An exponential inequality for associated variables," Statistics & Probability Letters, Elsevier, vol. 73(2), pages 189-197, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannides, D. A. & Roussas, G. G., 1999. "Exponential inequality for associated random variables," Statistics & Probability Letters, Elsevier, vol. 42(4), pages 423-431, May.
    2. Roussas, George G., 2001. "An Esséen-type inequality for probability density functions, with an application," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 397-408, February.
    3. Cai, Zongwu & Roussas, George G., 1998. "Kaplan-Meier Estimator under Association," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 318-348, November.
    4. Masry, Elias, 2003. "Local polynomial fitting under association," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 330-359, August.
    5. Huang, Wen-Tao & Xu, Bing, 2002. "Some maximal inequalities and complete convergences of negatively associated random sequences," Statistics & Probability Letters, Elsevier, vol. 57(2), pages 183-191, April.
    6. Pierre Jacob & Paulo Oliveira, 1999. "Histograms and Associated Point Processes," Statistical Inference for Stochastic Processes, Springer, vol. 2(3), pages 227-251, October.
    7. Li, Yongming & Yang, Shanchao & Wei, Chengdong, 2011. "Some inequalities for strong mixing random variables with applications to density estimation," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 250-258, February.
    8. Masry, Elias, 2002. "Multivariate probability density estimation for associated processes: strong consistency and rates," Statistics & Probability Letters, Elsevier, vol. 58(2), pages 205-219, June.
    9. Yang, Shanchao & Su, Chun & Yu, Keming, 2008. "A general method to the strong law of large numbers and its applications," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 794-803, April.
    10. Sung, Soo Hak, 2007. "A note on the exponential inequality for associated random variables," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1730-1736, December.
    11. Roussas, George G., 1995. "Asymptotic normality of a smooth estimate of a random field distribution function under association," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 77-90, July.
    12. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.
    13. Liang, Han-Ying & Fan, Guo-Liang, 2009. "Berry-Esseen type bounds of estimators in a semiparametric model with linear process errors," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 1-15, January.
    14. Li, Yongming & Yang, Shanchao & Zhou, Yong, 2008. "Consistency and uniformly asymptotic normality of wavelet estimator in regression model with associated samples," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2947-2956, December.
    15. Gonzalo Perera, 1997. "Geometry of $$\mathbb{Z}^d $$ and the Central Limit Theorem for Weakly Dependent Random Fields," Journal of Theoretical Probability, Springer, vol. 10(3), pages 581-603, July.
    16. Bing-Yi Jing & Han-Ying Liang, 2008. "Strong Limit Theorems for Weighted Sums of Negatively Associated Random Variables," Journal of Theoretical Probability, Springer, vol. 21(4), pages 890-909, December.
    17. Liang, Han-Ying, 2000. "Complete convergence for weighted sums of negatively associated random variables," Statistics & Probability Letters, Elsevier, vol. 48(4), pages 317-325, July.
    18. Wang, Jiang-Feng & Liang, Han-Ying, 2008. "A note on the almost sure central limit theorem for negatively associated fields," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1964-1970, September.
    19. Bulinski, Alexander & Suquet, Charles, 2001. "Normal approximation for quasi-associated random fields," Statistics & Probability Letters, Elsevier, vol. 54(2), pages 215-226, September.
    20. Yang, Shanchao, 2003. "Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples," Statistics & Probability Letters, Elsevier, vol. 62(2), pages 101-110, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:23:y:2010:i:1:d:10.1007_s10959-008-0205-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.