IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i2p250-258.html
   My bibliography  Save this article

Some inequalities for strong mixing random variables with applications to density estimation

Author

Listed:
  • Li, Yongming
  • Yang, Shanchao
  • Wei, Chengdong

Abstract

In this paper, we establish an inequality of the characteristic functions for strongly mixing random vectors, by which, an upper bound is provided for the supremum of the absolute value of the difference of two multivariate probability density functions based on strongly mixing random vectors. As its application, we consider the consistency and asymptotic normality of a kernel estimate of a density function under strong mixing. Our results generalize some known results in the literature.

Suggested Citation

  • Li, Yongming & Yang, Shanchao & Wei, Chengdong, 2011. "Some inequalities for strong mixing random variables with applications to density estimation," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 250-258, February.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:2:p:250-258
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00280-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roussas, George G., 2001. "An Esséen-type inequality for probability density functions, with an application," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 397-408, February.
    2. Bagai, Isha & Prakasa Rao, B. L. S., 1991. "Estimation of the survival function for stationary associated processes," Statistics & Probability Letters, Elsevier, vol. 12(5), pages 385-391, November.
    3. Roussas, George G., 1995. "Asymptotic normality of a smooth estimate of a random field distribution function under association," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 77-90, July.
    4. Roussas, George G., 1991. "Kernel estimates under association: strong uniform consistency," Statistics & Probability Letters, Elsevier, vol. 12(5), pages 393-403, November.
    5. Cai, Zongwu, 1998. "Asymptotic properties of Kaplan-Meier estimator for censored dependent data," Statistics & Probability Letters, Elsevier, vol. 37(4), pages 381-389, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannides, D. A. & Roussas, G. G., 1999. "Exponential inequality for associated random variables," Statistics & Probability Letters, Elsevier, vol. 42(4), pages 423-431, May.
    2. Roussas, George G., 2001. "An Esséen-type inequality for probability density functions, with an application," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 397-408, February.
    3. Roussas, George G., 1995. "Asymptotic normality of a smooth estimate of a random field distribution function under association," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 77-90, July.
    4. Cai, Zongwu & Roussas, George G., 1998. "Kaplan-Meier Estimator under Association," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 318-348, November.
    5. Masry, Elias, 2003. "Local polynomial fitting under association," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 330-359, August.
    6. Guodong Xing & Shanchao Yang, 2010. "Some Exponential Inequalities for Positively Associated Random Variables and Rates of Convergence of the Strong Law of Large Numbers," Journal of Theoretical Probability, Springer, vol. 23(1), pages 169-192, March.
    7. Yi Wu & Wei Yu & Xuejun Wang, 2022. "Strong representations of the Kaplan–Meier estimator and hazard estimator with censored widely orthant dependent data," Computational Statistics, Springer, vol. 37(1), pages 383-402, March.
    8. Masry, Elias, 2002. "Multivariate probability density estimation for associated processes: strong consistency and rates," Statistics & Probability Letters, Elsevier, vol. 58(2), pages 205-219, June.
    9. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.
    10. Chaubey, Yogendra P. & Dewan, Isha & Li, Jun, 2011. "Smooth estimation of survival and density functions for a stationary associated process using Poisson weights," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 267-276, February.
    11. Garg, Mansi & Dewan, Isha, 2015. "On asymptotic behavior of U-statistics for associated random variables," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 209-220.
    12. Taoufik Bouezmarni & Jeroen Rombouts, 2008. "Density and hazard rate estimation for censored and α-mixing data using gamma kernels," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 627-643.
    13. Li, Yongming & Yang, Shanchao & Zhou, Yong, 2008. "Consistency and uniformly asymptotic normality of wavelet estimator in regression model with associated samples," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2947-2956, December.
    14. Salah Khardani & Mohamed Lemdani & Elias Ould Saïd, 2012. "On the strong uniform consistency of the mode estimator for censored time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(2), pages 229-241, February.
    15. Huang, Wen-Tao & Xu, Bing, 2002. "Some maximal inequalities and complete convergences of negatively associated random sequences," Statistics & Probability Letters, Elsevier, vol. 57(2), pages 183-191, April.
    16. Cai, Zongwu, 1998. "Kernel Density and Hazard Rate Estimation for Censored Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 23-34, October.
    17. E.I., Abdul Sathar & K.V., Viswakala, 2019. "Non-parametric estimation of Kullback–Leibler discrimination information based on censored data," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    18. Isha Bagai & B. Prakasa Rao, 1995. "Kernel-type density and failure rate estimation for associated sequences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(2), pages 253-266, June.
    19. Jiun-Hua Su, 2019. "Counterfactual Inference in Duration Models with Random Censoring," Papers 1902.08502, arXiv.org.
    20. Pierre Jacob & Paulo Oliveira, 1999. "Histograms and Associated Point Processes," Statistical Inference for Stochastic Processes, Springer, vol. 2(3), pages 227-251, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:2:p:250-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.