IDEAS home Printed from https://ideas.repec.org/a/spr/jospat/v3y2022i1d10.1007_s43071-022-00027-6.html
   My bibliography  Save this article

Wave after wave: determining the temporal lag in Covid-19 infections and deaths using spatial panel data from Germany

Author

Listed:
  • Manuela Fritz

    (University of Passau
    University of Groningen)

Abstract

The Covid-19 pandemic requires a continuous evaluation of whether current policies and measures taken are sufficient to protect vulnerable populations. One quantitative indicator of policy effectiveness and pandemic severity is the case fatality ratio, which relies on the lagged number of infections relative to current deaths. The appropriate length of the time lag to be used, however, is heavily debated. In this article, I contribute to this debate by determining the temporal lag between the number of infections and deaths using daily panel data from Germany’s 16 federal states. To account for the dynamic spatial spread of the virus, I rely on different spatial econometric models that allow not only to consider the infections in a given state but also spillover effects through infections in neighboring federal states. My results suggest that a wave of infections within a given state is followed by increasing death rates 12 days later. Yet, if the number of infections in other states rises, the number of death cases within that given state subsequently decreases. The results of this article contribute to the better understanding of the dynamic spatio-temporal spread of the virus in Germany, which is indispensable for the design of effective policy responses.

Suggested Citation

  • Manuela Fritz, 2022. "Wave after wave: determining the temporal lag in Covid-19 infections and deaths using spatial panel data from Germany," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-30, December.
  • Handle: RePEc:spr:jospat:v:3:y:2022:i:1:d:10.1007_s43071-022-00027-6
    DOI: 10.1007/s43071-022-00027-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43071-022-00027-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43071-022-00027-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2016. "Exponent of Cross‐Sectional Dependence: Estimation and Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 929-960, September.
    2. Olivier Deschênes & Enrico Moretti, 2009. "Extreme Weather Events, Mortality, and Migration," The Review of Economics and Statistics, MIT Press, vol. 91(4), pages 659-681, November.
    3. Ciccarelli, Carlo & Elhorst, J.Paul, 2018. "A dynamic spatial econometric diffusion model with common factors: The rise and spread of cigarette consumption in Italy," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 131-142.
    4. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    5. Federico Belotti & Gordon Hughes & Andrea Piano Mortari, 2017. "Spatial panel-data models using Stata," Stata Journal, StataCorp LP, vol. 17(1), pages 139-180, March.
    6. Lee, Lung-fei & Yu, Jihai, 2010. "A Spatial Dynamic Panel Data Model With Both Time And Individual Fixed Effects," Econometric Theory, Cambridge University Press, vol. 26(2), pages 564-597, April.
    7. Augusto Cerqua & Roberta Di Stefano & Marco Letta & Sara Miccoli, 2021. "Was there a COVID-19 harvesting effect in Northern Italy?," Papers 2103.01812, arXiv.org, revised Mar 2021.
    8. Halleck Vega, Solmaria & Elhorst, J. Paul, 2016. "A regional unemployment model simultaneously accounting for serial dynamics, spatial dependence and common factors," Regional Science and Urban Economics, Elsevier, vol. 60(C), pages 85-95.
    9. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    10. Karlsson, Martin & Ziebarth, Nicolas R., 2018. "Population health effects and health-related costs of extreme temperatures: Comprehensive evidence from Germany," Journal of Environmental Economics and Management, Elsevier, vol. 91(C), pages 93-117.
    11. Bai, Jushan & Li, Kunpeng, 2021. "Dynamic spatial panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 224(1), pages 134-160.
    12. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    13. Shi, Wei & Lee, Lung-fei, 2017. "Spatial dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 197(2), pages 323-347.
    14. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    15. J. Paul Elhorst & Marco Gross & Eugen Tereanu, 2021. "Cross‐Sectional Dependence And Spillovers In Space And Time: Where Spatial Econometrics And Global Var Models Meet," Journal of Economic Surveys, Wiley Blackwell, vol. 35(1), pages 192-226, February.
    16. Li, Liyao & Yang, Zhenlin, 2021. "Spatial dynamic panel data models with correlated random effects," Journal of Econometrics, Elsevier, vol. 221(2), pages 424-454.
    17. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    18. Daniel Hoechle, 2007. "Robust standard errors for panel regressions with cross-sectional dependence," Stata Journal, StataCorp LP, vol. 7(3), pages 281-312, September.
    19. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    20. Tamás Krisztin & Philipp Piribauer & Michael Wögerer, 2020. "The spatial econometrics of the coronavirus pandemic," Letters in Spatial and Resource Sciences, Springer, vol. 13(3), pages 209-218, December.
    21. Tue Gorgens & Sanghyeok Lee, 2017. "Estimation of dynamic models of recurring events with censored data," ANU Working Papers in Economics and Econometrics 2017-655, Australian National University, College of Business and Economics, School of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camilla Mastromarco & Laura Serlenga & Yongcheol Shin, 2023. "Regional Productivity Network in the EU," CESifo Working Paper Series 10404, CESifo.
    2. Chen, Jia & Shin, Yongcheol & Zheng, Chaowen, 2022. "Estimation and inference in heterogeneous spatial panels with a multifactor error structure," Journal of Econometrics, Elsevier, vol. 229(1), pages 55-79.
    3. Vincent, Rose Camille & Osei Kwadwo, Victor, 2022. "Spatial interdependence and spillovers of fiscal grants in Benin: Static and dynamic diffusions," World Development, Elsevier, vol. 158(C).
    4. Wei Shi & Lung-fei Lee, 2018. "The effects of gun control on crimes: a spatial interactive fixed effects approach," Empirical Economics, Springer, vol. 55(1), pages 233-263, August.
    5. Anna Gloria Billé & Marco Rogna, 2022. "The effect of weather conditions on fertilizer applications: A spatial dynamic panel data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 3-36, January.
    6. Guowei Cui & Vasilis Sarafidis & Takashi Yamagata, 2023. "IV estimation of spatial dynamic panels with interactive effects: large sample theory and an application on bank attitude towards risk," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 124-146.
    7. Cynthia Fan Yang, 2021. "Common factors and spatial dependence: an application to US house prices," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 14-50, January.
    8. Halleck Vega, Solmaria & Elhorst, J. Paul, 2016. "A regional unemployment model simultaneously accounting for serial dynamics, spatial dependence and common factors," Regional Science and Urban Economics, Elsevier, vol. 60(C), pages 85-95.
    9. Ando, Tomohiro & Li, Kunpeng & Lu, Lina, 2023. "A spatial panel quantile model with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 232(1), pages 191-213.
    10. Issam Khelfaoui & Yuantao Xie & Muhammad Hafeez & Danish Ahmed & Houssem Eddine Degha & Hicham Meskher, 2022. "Information Communication Technology and Infant Mortality in Low-Income Countries: Empirical Study Using Panel Data Models," IJERPH, MDPI, vol. 19(12), pages 1-24, June.
    11. Ciccarelli, Carlo & Elhorst, J.Paul, 2018. "A dynamic spatial econometric diffusion model with common factors: The rise and spread of cigarette consumption in Italy," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 131-142.
    12. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    13. Bertoli, Simone & Fernández-Huertas Moraga, Jesús, 2013. "Multilateral resistance to migration," Journal of Development Economics, Elsevier, vol. 102(C), pages 79-100.
    14. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    15. Carmelo Algeri & Antonio F. Forgione & Carlo Migliardo, 2022. "Do spatial dependence and market power matter in the diversification of cooperative banks?," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 51(3), November.
    16. Albert MILLOGO & Ines TROJETTE & Nicolas PÉRIDY, 2021. "Are government policies efficient to regulate immigration? Evidence from France," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 53, pages 23-49.
    17. Elhorst, J. Paul & Madre, Jean-Loup & Pirotte, Alain, 2020. "Car traffic, habit persistence, cross-sectional dependence, and spatial heterogeneity: New insights using French departmental data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 614-632.
    18. Philip Kerner & Torben Klarl & Tobias Wendler, 2021. "Green Technologies, Environmental Policy and Regional Growth," Bremen Papers on Economics & Innovation 2104, University of Bremen, Faculty of Business Studies and Economics.
    19. Demetrescu, Matei & Hosseinkouchack, Mehdi & Rodrigues, Paulo M. M., 2023. "Tests of no cross-sectional error dependence in panel quantile regressions," Ruhr Economic Papers 1041, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    20. Chakraborty, Saptorshee Kanto & Mazzanti, Massimiliano, 2020. "Energy intensity and green energy innovation: Checking heterogeneous country effects in the OECD," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 328-343.

    More about this item

    Keywords

    Covid-19; Spatio-temporal models; Time lag effects; Spatial spillovers; Spatial Durbin model; Germany;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • I10 - Health, Education, and Welfare - - Health - - - General
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jospat:v:3:y:2022:i:1:d:10.1007_s43071-022-00027-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.