IDEAS home Printed from https://ideas.repec.org/a/tsj/stataj/v17y2017i1p139-180.html
   My bibliography  Save this article

Spatial panel-data models using Stata

Author

Listed:
  • Federico Belotti

    (University of Rome Tor Vergata)

  • Gordon Hughes

    (University of Edinburgh)

  • Andrea Piano Mortari

    (University of Rome Tor Vergata)

Abstract

xsmle is a new user-written command for spatial analysis. We consider the quasi–maximum likelihood estimation of a wide set of both fixed- and random-effects spatial models for balanced panel data. xsmle allows users to han- dle unbalanced panels using its full compatibility with the mi suite of commands, use spatial weight matrices in the form of both Stata matrices and spmat objects, compute direct, indirect, and total marginal effects and related standard errors for linear (in variables) specifications, and exploit a wide range of postestimation features, including the panel-data case predictors of Kelejian and Prucha (2007, Regional Science and Urban Economics 37: 363–374). Moreover, xsmle allows the use of margins to compute total marginal effects in the presence of nonlinear specifications obtained using factor variables. In this article, we describe the command and all of its functionalities using simulated and real data.

Suggested Citation

  • Federico Belotti & Gordon Hughes & Andrea Piano Mortari, 2017. "Spatial panel-data models using Stata," Stata Journal, StataCorp LP, vol. 17(1), pages 139-180, March.
  • Handle: RePEc:tsj:stataj:v:17:y:2017:i:1:p:139-180
    Note: to access software from within Stata, net describe http://www.stata-journal.com/software/sj17-1/st0470/
    as

    Download full text from publisher

    File URL: http://www.stata-journal.com/article.html?article=st0470
    File Function: link to article purchase
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    2. Bramoullé, Yann & Djebbari, Habiba & Fortin, Bernard, 2009. "Identification of peer effects through social networks," Journal of Econometrics, Elsevier, vol. 150(1), pages 41-55, May.
    3. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    4. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    5. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    6. Daniel Hoechle, 2007. "Robust standard errors for panel regressions with cross-sectional dependence," Stata Journal, StataCorp LP, vol. 7(3), pages 281-312, September.
    7. Millo, Giovanni & Piras, Gianfranco, 2012. "splm: Spatial Panel Data Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i01).
    8. Philip Kostov, 2009. "A Spatial Quantile Regression Hedonic Model of Agricultural Land Prices," Spatial Economic Analysis, Taylor & Francis Journals, vol. 4(1), pages 53-72.
    9. David M. Drukker & Ingmar Prucha & Rafal Raciborski, 2013. "A command for estimating spatial-autoregressive models with spatial-autoregressive disturbances and additional endogenous variables," Stata Journal, StataCorp LP, vol. 13(2), pages 287-301, June.
    10. J. Paul Elhorst & Sandy Fréret, 2009. "Evidence Of Political Yardstick Competition In France Using A Two‐Regime Spatial Durbin Model With Fixed Effects," Journal of Regional Science, Wiley Blackwell, vol. 49(5), pages 931-951, December.
    11. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    12. Sole Olle, Albert, 2003. "Electoral accountability and tax mimicking: the effects of electoral margins, coalition government, and ideology," European Journal of Political Economy, Elsevier, vol. 19(4), pages 685-713, November.
    13. David M. Drukker & Hua Peng & Ingmar Prucha & Rafal Raciborski, 2013. "Creating and managing spatial-weighting matrices with the spmat command," Stata Journal, StataCorp LP, vol. 13(2), pages 242-286, June.
    14. F. Moscone & E. Tosetti & G. Vittadini, 2012. "Social interaction in patients’ hospital choice: evidence from Italy," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 453-472, April.
    15. Federico Revelli, 2005. "On Spatial Public Finance Empirics," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 12(4), pages 475-492, August.
    16. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "The relative efficiencies of various predictors in spatial econometric models containing spatial lags," Regional Science and Urban Economics, Elsevier, vol. 37(3), pages 363-374, May.
    17. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    18. P. Wilner Jeanty, 2010. "SPWMATRIX: Stata module to generate, import, and export spatial weights," Statistical Software Components S457111, Boston College Department of Economics, revised 15 Mar 2014.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    2. Atella, Vincenzo & Belotti, Federico & Depalo, Domenico & Piano Mortari, Andrea, 2014. "Measuring spatial effects in the presence of institutional constraints: The case of Italian Local Health Authority expenditure," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 232-241.
    3. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    4. Borck, Rainald & Fossen, Frank M. & Freier, Ronny & Martin, Thorsten, 2015. "Race to the debt trap? — Spatial econometric evidence on debt in German municipalities," Regional Science and Urban Economics, Elsevier, vol. 53(C), pages 20-37.
    5. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    6. J. Paul Elhorst, 2014. "Dynamic Spatial Panels: Models, Methods and Inferences," SpringerBriefs in Regional Science, in: Spatial Econometrics, edition 127, chapter 0, pages 95-119, Springer.
    7. Hidalgo, Javier & Schafgans, Marcia, 2017. "Inference and testing breaks in large dynamic panels with strong cross sectional dependence," Journal of Econometrics, Elsevier, vol. 196(2), pages 259-274.
    8. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2012. "Estimation for spatial dynamic panel data with fixed effects: The case of spatial cointegration," Journal of Econometrics, Elsevier, vol. 167(1), pages 16-37.
    9. Bai, Jushan & Li, Kunpeng, 2021. "Dynamic spatial panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 224(1), pages 134-160.
    10. Lung‐fei Lee & Jihai Yu, 2012. "Spatial Panels: Random Components Versus Fixed Effects," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(4), pages 1369-1412, November.
    11. Millo, Giovanni, 2014. "Maximum likelihood estimation of spatially and serially correlated panels with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 914-933.
    12. Wu, Jianhong & Li, Guodong, 2014. "Moment-based tests for individual and time effects in panel data models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 569-581.
    13. Giuseppe Arbia, 2011. "A Lustrum of SEA: Recent Research Trends Following the Creation of the Spatial Econometrics Association (2007--2011)," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 377-395, July.
    14. Hidalgo, Javier & Schafgans, Marcia, 2017. "Inference and testing breaks in large dynamic panels with strong cross sectional dependence," LSE Research Online Documents on Economics 68839, London School of Economics and Political Science, LSE Library.
    15. Li, Kunpeng, 2018. "Spatial panel data models with structural change," MPRA Paper 85388, University Library of Munich, Germany.
    16. repec:rri:wpaper:201303 is not listed on IDEAS
    17. Alfred Garloff & Carsten Pohl & Norbert Schanne, 2013. "Do small labor market entry cohorts reduce unemployment?," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(15), pages 379-406.
    18. Padovano, Fabio & Petrarca, Ilaria, 2014. "Are the responsibility and yardstick competition hypotheses mutually consistent?," European Journal of Political Economy, Elsevier, vol. 34(C), pages 459-477.
    19. Baltagi, Badi H. & Yen, Yin-Fang, 2014. "Hospital treatment rates and spillover effects: Does ownership matter?," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 193-202.
    20. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    21. Millo, Giovanni & Piras, Gianfranco, 2012. "splm: Spatial Panel Data Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i01).

    More about this item

    Keywords

    xsmle; spatial analysis; spatial autocorrelation model; spatial autoregressive model; spatial Durbin model; spatial error model; generalized spa- tial panel random-effects model; panel data; maximum likelihood estimation;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsj:stataj:v:17:y:2017:i:1:p:139-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum or Lisa Gilmore (email available below). General contact details of provider: http://www.stata-journal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.