Immunization and Max–Min Optimal Control
Author
Abstract
Suggested Citation
DOI: 10.1023/A:1022686225209
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Khang, Chulsoon, 1983. "A Dynamic Global Portfolio Immunization Strategy in the World of Multiple Interest Rate Changes: A Dynamic Immunization and Minimax Theorem," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(3), pages 355-363, September.
- Heath, David & Jarrow, Robert & Morton, Andrew, 1990. "Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(4), pages 419-440, December.
- Fong, H Gifford & Vasicek, Oldrich A, 1984. "A Risk Minimizing Strategy for Portfolio Immunization," Journal of Finance, American Finance Association, vol. 39(5), pages 1541-1546, December.
- Montrucchio, Luigi & Peccati, Lorenzo, 1991. "A note on Shiu--Fisher--Weil immunization theorem," Insurance: Mathematics and Economics, Elsevier, vol. 10(2), pages 125-131, July.
- Fisher, Lawrence & Weil, Roman L, 1971. "Coping with the Risk of Interest-Rate Fluctuations: Returns to Bondholders from Naive and Optimal Strategies," The Journal of Business, University of Chicago Press, vol. 44(4), pages 408-431, October.
- Bierwag, G. O., 1979. "Dynamic portfolio immunization policies," Journal of Banking & Finance, Elsevier, vol. 3(1), pages 23-41, April.
- Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
- Bierwag, G O & Khang, Chulsoon, 1979. "An Immunization Strategy Is a Minimax Strategy," Journal of Finance, American Finance Association, vol. 34(2), pages 389-399, May.
- Ritchken, Peter & Boenawan, Kiekie, 1990. "On Arbitrage-Free Pricing of Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 45(1), pages 259-264, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Barber, Joel R. & Copper, Mark L., 1998. "A minimax risk strategy for portfolio immunization," Insurance: Mathematics and Economics, Elsevier, vol. 23(2), pages 173-177, November.
- Ghezzi, Luca Luigi, 1999. "A maxmin policy for bond management," European Journal of Operational Research, Elsevier, vol. 114(2), pages 389-394, April.
- George G. Kaufman, 1980. "Duration, Planning Period, And Tests Of The Capital Asset Pricing Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 3(1), pages 1-9, March.
- Cláudia Simões & Luís Oliveira & Jorge M. Bravo, 2021. "Immunization Strategies for Funding Multiple Inflation-Linked Retirement Income Benefits," Risks, MDPI, vol. 9(4), pages 1-28, March.
- Sercu, P., 1991. "Bond options and bond portfolio insurance," Insurance: Mathematics and Economics, Elsevier, vol. 10(3), pages 203-230, December.
- Joseba Iñaki De La Peña & Iván Iturricastillo & Rafael Moreno & Francisco Román & Eduardo Trigo, 2021. "Towards an immunization perfect model?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1181-1196, January.
- Ibáñez, Alfredo, 1994. "When can you immunize a bond portfolio?," DEE - Working Papers. Business Economics. WB 7078, Universidad Carlos III de Madrid. Departamento de EconomÃa de la Empresa.
- Uberti, M., 1997. "A note on Shiu's immunization results," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 195-200, December.
- Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
- Victor Lapshin, 2019. "A Nonparametric Approach to Bond Portfolio Immunization," Mathematics, MDPI, vol. 7(11), pages 1-12, November.
- Das, Sanjiv Ranjan, 1998. "A direct discrete-time approach to Poisson-Gaussian bond option pricing in the Heath-Jarrow-Morton model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(3), pages 333-369, November.
- Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
- repec:uts:finphd:40 is not listed on IDEAS
- Patrick Hagan & Diana Woodward, 1999. "Markov interest rate models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(4), pages 233-260.
- Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
- Dwight Grant & Gautam Vora, 2006. "Extending the universality of the Heath–Jarrow–Morton model," Review of Financial Economics, John Wiley & Sons, vol. 15(2), pages 129-157.
- Klaassen, Pieter, 1997. "Discretized reality and spurious profits in stochastic programming models for asset/liability management," Serie Research Memoranda 0011, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- David Bolder, 2001. "Affine Term-Structure Models: Theory and Implementation," Staff Working Papers 01-15, Bank of Canada.
- Wilhelm, Jochen, 2000. "Das Gaußsche Zinsstrukturmodell: Eine Analyse auf der Basis von Wahrscheinlichkeitsverteilungen," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe 6, University of Passau, Faculty of Business and Economics.
- Mahendra Raj, 1994. "Pricing options on short-term interest rates using discrete arbitrage-free models," Applied Economics Letters, Taylor & Francis Journals, vol. 1(1), pages 1-3.
- Sanjiv Ranjan Das, 1997. "An Efficient Generalized Discrete-Time Approach to Poisson-Gaussian Bond Option Pricing in the Heath-Jarrow-Morton Model," NBER Technical Working Papers 0212, National Bureau of Economic Research, Inc.
More about this item
Keywords
Max–min optimal control; dynamic programming; immunization; term structure of interest rates;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:95:y:1997:i:3:d:10.1023_a:1022686225209. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.