IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i2d10.1007_s10957-024-02467-6.html
   My bibliography  Save this article

Primal–Dual Stability in Local Optimality

Author

Listed:
  • Matúš Benko

    (Johann Radon Institute for Computational and Applied Mathematics)

  • R. Tyrrell Rockafellar

    (University of Washington)

Abstract

Much is known about when a locally optimal solution depends in a single-valued Lipschitz continuous way on the problem’s parameters, including tilt perturbations. Much less is known, however, about when that solution and a uniquely determined multiplier vector associated with it exhibit that dependence as a primal–dual pair. In classical nonlinear programming, such advantageous behavior is tied to the combination of the standard strong second-order sufficient condition (SSOC) for local optimality and the linear independent gradient condition (LIGC) on the active constraint gradients. But although second-order sufficient conditons have successfully been extended far beyond nonlinear programming, insights into what should replace constraint gradient independence as the extended dual counterpart have been lacking. The exact answer is provided here for a wide range of optimization problems in finite dimensions. Behind it are advances in how coderivatives and strict graphical derivatives can be deployed. New results about strong metric regularity in solving variational inequalities and generalized equations are obtained from that as well.

Suggested Citation

  • Matúš Benko & R. Tyrrell Rockafellar, 2024. "Primal–Dual Stability in Local Optimality," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1325-1354, November.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02467-6
    DOI: 10.1007/s10957-024-02467-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02467-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02467-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matúš Benko & Patrick Mehlitz, 2024. "Isolated Calmness of Perturbation Mappings and Superlinear Convergence of Newton-Type Methods," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1587-1621, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02467-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.