IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v202y2024i2d10.1007_s10957-024-02447-w.html
   My bibliography  Save this article

Optimality and Duality for Robust Optimization Problems Involving Intersection of Closed Sets

Author

Listed:
  • Nguyen Canh Hung

    (University of Science
    Vietnam National University
    Nha Trang University)

  • Thai Doan Chuong

    (Brunel University London)

  • Nguyen Le Hoang Anh

    (University of Science
    Vietnam National University)

Abstract

In this paper, we study a robust optimization problem whose constraints include nonsmooth and nonconvex functions and the intersection of closed sets. Using advanced variational analysis tools, we first provide necessary conditions for the optimality of the robust optimization problem. We then establish sufficient conditions for the optimality of the considered problem under the assumption of generalized convexity. In addition, we present a dual problem to the primal robust optimization problem and examine duality relations.

Suggested Citation

  • Nguyen Canh Hung & Thai Doan Chuong & Nguyen Le Hoang Anh, 2024. "Optimality and Duality for Robust Optimization Problems Involving Intersection of Closed Sets," Journal of Optimization Theory and Applications, Springer, vol. 202(2), pages 771-794, August.
  • Handle: RePEc:spr:joptap:v:202:y:2024:i:2:d:10.1007_s10957-024-02447-w
    DOI: 10.1007/s10957-024-02447-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02447-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02447-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chieu, N.H. & Jeyakumar, V. & Li, G. & Mohebi, H., 2018. "Constraint qualifications for convex optimization without convexity of constraints : New connections and applications to best approximation," European Journal of Operational Research, Elsevier, vol. 265(1), pages 19-25.
    2. E. Allevi & J. E. Martínez-Legaz & R. Riccardi, 2020. "Optimality conditions for convex problems on intersections of non necessarily convex sets," Journal of Global Optimization, Springer, vol. 77(1), pages 143-155, May.
    3. V. Jeyakumar & G. M. Lee & G. Li, 2015. "Characterizing Robust Solution Sets of Convex Programs under Data Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 407-435, February.
    4. Hoang Tuy, 2016. "Convex Analysis and Global Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-31484-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen Ngoc Luan & Nguyen Dong Yen, 2024. "Strong Duality and Solution Existence Under Minimal Assumptions in Conic Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1083-1102, November.
    2. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    3. Peiping Shen & Kaimin Wang & Ting Lu, 2020. "Outer space branch and bound algorithm for solving linear multiplicative programming problems," Journal of Global Optimization, Springer, vol. 78(3), pages 453-482, November.
    4. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "Robustness Characterizations for Uncertain Optimization Problems via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 459-479, August.
    5. W. Ackooij & S. Demassey & P. Javal & H. Morais & W. Oliveira & B. Swaminathan, 2021. "A bundle method for nonsmooth DC programming with application to chance-constrained problems," Computational Optimization and Applications, Springer, vol. 78(2), pages 451-490, March.
    6. Takahito Kuno, 2022. "A revision of the rectangular algorithm for a class of DC optimization problems," Journal of Global Optimization, Springer, vol. 83(2), pages 187-200, June.
    7. Bo Wen & Xiaojun Chen & Ting Kei Pong, 2018. "A proximal difference-of-convex algorithm with extrapolation," Computational Optimization and Applications, Springer, vol. 69(2), pages 297-324, March.
    8. Jiawei Chen & Jun Li & Xiaobing Li & Yibing Lv & Jen-Chih Yao, 2020. "Radius of Robust Feasibility of System of Convex Inequalities with Uncertain Data," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 384-399, February.
    9. Jae Hyoung Lee & Gue Myung Lee, 2018. "On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems," Annals of Operations Research, Springer, vol. 269(1), pages 419-438, October.
    10. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "Characterizations for Optimality Conditions of General Robust Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 835-856, June.
    11. Nguyen Dong Yen, 2023. "Book review on “Convex Analysis and Beyond. Volume I: Basic Theory”, a monograph by Boris S. Mordukhovich and Nguyen Mau Nam," Journal of Global Optimization, Springer, vol. 85(1), pages 251-255, January.
    12. Kabgani, Alireza & Soleimani-damaneh, Majid, 2022. "Semi-quasidifferentiability in nonsmooth nonconvex multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 299(1), pages 35-45.
    13. Riccardo Cambini, 2020. "Underestimation functions for a rank-two partitioning method," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 465-489, December.
    14. Tianxiang Liu & Ting Kei Pong & Akiko Takeda, 2019. "A refined convergence analysis of $$\hbox {pDCA}_{e}$$ pDCA e with applications to simultaneous sparse recovery and outlier detection," Computational Optimization and Applications, Springer, vol. 73(1), pages 69-100, May.
    15. Mohand Bentobache & Mohamed Telli & Abdelkader Mokhtari, 2022. "New LP-based local and global algorithms for continuous and mixed-integer nonconvex quadratic programming," Journal of Global Optimization, Springer, vol. 82(4), pages 659-689, April.
    16. Yue Zhou-Kangas & Kaisa Miettinen, 2019. "Decision making in multiobjective optimization problems under uncertainty: balancing between robustness and quality," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 391-413, June.
    17. Shen, Peiping & Zhu, Zeyi & Chen, Xiao, 2019. "A practicable contraction approach for the sum of the generalized polynomial ratios problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 36-48.
    18. Xiangkai Sun & Kok Lay Teo & Liping Tang, 2019. "Dual Approaches to Characterize Robust Optimal Solution Sets for a Class of Uncertain Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 984-1000, September.
    19. Felipe Serrano & Robert Schwarz & Ambros Gleixner, 2020. "On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm," Journal of Global Optimization, Springer, vol. 78(1), pages 161-179, September.
    20. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:202:y:2024:i:2:d:10.1007_s10957-024-02447-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.