IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v178y2018i2d10.1007_s10957-018-1312-7.html
   My bibliography  Save this article

Stability of Local Efficiency in Multiobjective Optimization

Author

Listed:
  • Sanaz Sadeghi

    (Shiraz University)

  • S. Morteza Mirdehghan

    (Shiraz University)

Abstract

Analyzing the behavior and stability properties of a local optimum in an optimization problem, when small perturbations are added to the objective functions, are important considerations in optimization. The tilt stability of a local minimum in a scalar optimization problem is a well-studied concept in optimization which is a version of the Lipschitzian stability condition for a local minimum. In this paper, we define a new concept of stability pertinent to the study of multiobjective optimization problems. We prove that our new concept of stability is equivalent to tilt stability when scalar optimizations are available. We then use our new notions of stability to establish new necessary and sufficient conditions on when strict locally efficient solutions of a multiobjective optimization problem will have small changes when correspondingly small perturbations are added to the objective functions.

Suggested Citation

  • Sanaz Sadeghi & S. Morteza Mirdehghan, 2018. "Stability of Local Efficiency in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 591-613, August.
  • Handle: RePEc:spr:joptap:v:178:y:2018:i:2:d:10.1007_s10957-018-1312-7
    DOI: 10.1007/s10957-018-1312-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1312-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1312-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Georgiev, Pando Gr. & Luc, Dinh The & Pardalos, Panos M., 2013. "Robust aspects of solutions in deterministic multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 229(1), pages 29-36.
    2. Fliege, Jörg & Werner, Ralf, 2014. "Robust multiobjective optimization & applications in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 422-433.
    3. V. Jeyakumar & G. M. Lee & G. Li, 2015. "Characterizing Robust Solution Sets of Convex Programs under Data Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 407-435, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morteza Rahimi & Majid Soleimani-damaneh, 2023. "Aubin property for solution set in multi-objective programming," Journal of Global Optimization, Springer, vol. 85(2), pages 441-460, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Eichfelder & Corinna Krüger & Anita Schöbel, 2017. "Decision uncertainty in multiobjective optimization," Journal of Global Optimization, Springer, vol. 69(2), pages 485-510, October.
    2. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2015. "Robust solutions to multi-objective linear programs with uncertain data," European Journal of Operational Research, Elsevier, vol. 242(3), pages 730-743.
    3. Morteza Rahimi & Majid Soleimani-damaneh, 2018. "Robustness in Deterministic Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 137-162, October.
    4. Botte, Marco & Schöbel, Anita, 2019. "Dominance for multi-objective robust optimization concepts," European Journal of Operational Research, Elsevier, vol. 273(2), pages 430-440.
    5. Schöbel, Anita & Zhou-Kangas, Yue, 2021. "The price of multiobjective robustness: Analyzing solution sets to uncertain multiobjective problems," European Journal of Operational Research, Elsevier, vol. 291(2), pages 782-793.
    6. Jiawei Chen & Elisabeth Köbis & Jen-Chih Yao, 2019. "Optimality Conditions and Duality for Robust Nonsmooth Multiobjective Optimization Problems with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 411-436, May.
    7. Morteza Rahimi & Majid Soleimani-damaneh, 2020. "Characterization of Norm-Based Robust Solutions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 554-573, May.
    8. Pätäri, Eero & Karell, Ville & Luukka, Pasi & Yeomans, Julian S, 2018. "Comparison of the multicriteria decision-making methods for equity portfolio selection: The U.S. evidence," European Journal of Operational Research, Elsevier, vol. 265(2), pages 655-672.
    9. Igor Cialenco & Gabriela Kov'av{c}ov'a, 2024. "Vector-valued robust stochastic control," Papers 2407.00266, arXiv.org.
    10. Kang, Yan-li & Tian, Jing-Song & Chen, Chen & Zhao, Gui-Yu & Li, Yuan-fu & Wei, Yu, 2021. "Entropy based robust portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    11. David Quintana & Roman Denysiuk & Sandra García-Rodríguez & Antonio Gaspar-Cunha, 2017. "Portfolio implementation risk management using evolutionary multiobjective optimization," Post-Print hal-01881379, HAL.
    12. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    13. Qi, Yue & Liao, Kezhi & Liu, Tongyang & Zhang, Yu, 2022. "Originating multiple-objective portfolio selection by counter-COVID measures and analytically instigating robust optimization by mean-parameterized nondominated paths," Operations Research Perspectives, Elsevier, vol. 9(C).
    14. Xiangkai Sun & Kok Lay Teo & Liping Tang, 2019. "Dual Approaches to Characterize Robust Optimal Solution Sets for a Class of Uncertain Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 984-1000, September.
    15. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    16. Kuhn, K. & Raith, A. & Schmidt, M. & Schöbel, A., 2016. "Bi-objective robust optimisation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 418-431.
    17. Mavrotas, George & Figueira, José Rui & Siskos, Eleftherios, 2015. "Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection," Omega, Elsevier, vol. 52(C), pages 142-155.
    18. Jie Wang & Shengjie Li & Min Feng, 2022. "Unified Robust Necessary Optimality Conditions for Nonconvex Nonsmooth Uncertain Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 226-248, October.
    19. Xidonas, Panos & Hassapis, Christis & Soulis, John & Samitas, Aristeidis, 2017. "Robust minimum variance portfolio optimization modelling under scenario uncertainty," Economic Modelling, Elsevier, vol. 64(C), pages 60-71.
    20. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "Robustness Characterizations for Uncertain Optimization Problems via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 459-479, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:178:y:2018:i:2:d:10.1007_s10957-018-1312-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.