IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v83y2022i2d10.1007_s10898-021-01102-2.html
   My bibliography  Save this article

A revision of the rectangular algorithm for a class of DC optimization problems

Author

Listed:
  • Takahito Kuno

    (University of Tsukuba)

Abstract

Every continuously differentiable function can be represented as a difference between a convex function and an additively separable convex function. We show that a DC function with this structure can be optimized using the rectangular algorithm for separable nonconvex optimization, and develop a revision to this algorithm for practical use. We also report some numerical results which indicate the effectiveness of the revision.

Suggested Citation

  • Takahito Kuno, 2022. "A revision of the rectangular algorithm for a class of DC optimization problems," Journal of Global Optimization, Springer, vol. 83(2), pages 187-200, June.
  • Handle: RePEc:spr:jglopt:v:83:y:2022:i:2:d:10.1007_s10898-021-01102-2
    DOI: 10.1007/s10898-021-01102-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01102-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01102-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James E. Falk & Richard M. Soland, 1969. "An Algorithm for Separable Nonconvex Programming Problems," Management Science, INFORMS, vol. 15(9), pages 550-569, May.
    2. Richard M. Soland, 1974. "Optimal Facility Location with Concave Costs," Operations Research, INFORMS, vol. 22(2), pages 373-382, April.
    3. Hoang Tuy, 2016. "Convex Analysis and Global Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-31484-6, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wooseung Jang & J. George Shanthikumar, 2002. "Stochastic allocation of inspection capacity to competitive processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(1), pages 78-94, February.
    2. Harold P. Benson & S. Selcuk Erenguc, 1990. "An algorithm for concave integer minimization over a polyhedron," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 515-525, August.
    3. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2023. "A general purpose exact solution method for mixed integer concave minimization problems," European Journal of Operational Research, Elsevier, vol. 309(3), pages 977-992.
    4. Harold P. Benson, 2004. "Concave envelopes of monomial functions over rectangles," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 467-476, June.
    5. Vedat Verter & M. Cemal Dincer, 1995. "Facility location and capacity acquisition: An integrated approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(8), pages 1141-1160, December.
    6. M. Vanhoucke, 2002. "Optimal Due Date Assignment In Project Scheduling," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 02/159, Ghent University, Faculty of Economics and Business Administration.
    7. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2021. "A General Purpose Exact Solution Method for Mixed Integer Concave Minimization Problems (revised as on 12/08/2021)," IIMA Working Papers WP 2021-03-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    8. Harold P. Benson, 1996. "Deterministic algorithms for constrained concave minimization: A unified critical survey," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 765-795, September.
    9. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2021. "A General Purpose Exact Solution Method for Mixed Integer Concave Minimization Problems," IIMA Working Papers WP 2021-03-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    10. Vanhoucke, Mario & Demeulemeester, Erik & Herroelen, Willy, 2003. "Progress payments in project scheduling problems," European Journal of Operational Research, Elsevier, vol. 148(3), pages 604-620, August.
    11. Yong Xia & Longfei Wang & Meijia Yang, 2019. "A fast algorithm for globally solving Tikhonov regularized total least squares problem," Journal of Global Optimization, Springer, vol. 73(2), pages 311-330, February.
    12. Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
    13. Xi, Haoning & Aussel, Didier & Liu, Wei & Waller, S.Travis. & Rey, David, 2024. "Single-leader multi-follower games for the regulation of two-sided mobility-as-a-service markets," European Journal of Operational Research, Elsevier, vol. 317(3), pages 718-736.
    14. Nguyen Ngoc Luan & Nguyen Dong Yen, 2024. "Strong Duality and Solution Existence Under Minimal Assumptions in Conic Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1083-1102, November.
    15. Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
    16. Felipe Serrano & Robert Schwarz & Ambros Gleixner, 2020. "On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm," Journal of Global Optimization, Springer, vol. 78(1), pages 161-179, September.
    17. Achim Wechsung & Spencer Schaber & Paul Barton, 2014. "The cluster problem revisited," Journal of Global Optimization, Springer, vol. 58(3), pages 429-438, March.
    18. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
    19. Achim Wechsung & Paul Barton, 2014. "Global optimization of bounded factorable functions with discontinuities," Journal of Global Optimization, Springer, vol. 58(1), pages 1-30, January.
    20. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:83:y:2022:i:2:d:10.1007_s10898-021-01102-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.