IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v202y2024i1d10.1007_s10957-023-02324-y.html
   My bibliography  Save this article

Weak Second-Order Conditions of Runge–Kutta Method for Stochastic Optimal Control Problems

Author

Listed:
  • Fikriye Yılmaz

    (Gazi University)

  • Hacer Öz Bakan
  • Gerhard-Wilhelm Weber

    (Poznan University of Technology
    IAM, METU)

Abstract

In this work, we obtain weak order-2 conditions of Runge–Kutta method for the optimal control of stochastic differential equations which occurs in many areas of economics and finance and recently in cognitive sciences and neuroscience. We get the order conditions that a stochastic Runge–Kutta technique must meet to have weak order two by comparing the stochastic expansion of the approximation with the associated Taylor scheme. Moreover, we present numerical examples which verify the theoretical results. We conclude our paper by a summary and an outlook to future research and application.

Suggested Citation

  • Fikriye Yılmaz & Hacer Öz Bakan & Gerhard-Wilhelm Weber, 2024. "Weak Second-Order Conditions of Runge–Kutta Method for Stochastic Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 497-517, July.
  • Handle: RePEc:spr:joptap:v:202:y:2024:i:1:d:10.1007_s10957-023-02324-y
    DOI: 10.1007/s10957-023-02324-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02324-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02324-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    2. Emel Savku & Gerhard-Wilhelm Weber, 2018. "A Stochastic Maximum Principle for a Markov Regime-Switching Jump-Diffusion Model with Delay and an Application to Finance," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 696-721, November.
    3. Wang, Guangchen & Wang, Wencan & Yan, Zhiguo, 2021. "Linear quadratic control of backward stochastic differential equation with partial information," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    4. N. C. Framstad & B. Øksendal & A. Sulem, 2004. "Sufficient Stochastic Maximum Principle for the Optimal Control of Jump Diffusions and Applications to Finance," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 77-98, April.
    5. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    6. Peijiang Liu & Rukhsar Ikram & Amir Khan & Anwarud Din, 2023. "The measles epidemic model assessment under real statistics: an application of stochastic optimal control theory," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 26(2), pages 138-159, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auffret, Philippe, 2001. "An alternative unifying measure of welfare gains from risk-sharing," Policy Research Working Paper Series 2676, The World Bank.
    2. Chen, An & Hieber, Peter & Sureth, Caren, 2022. "Pay for tax certainty? Advance tax rulings for risky investment under multi-dimensional tax uncertainty," arqus Discussion Papers in Quantitative Tax Research 273, arqus - Arbeitskreis Quantitative Steuerlehre.
    3. Andreas Fagereng & Luigi Guiso & Davide Malacrino & Luigi Pistaferri, 2020. "Heterogeneity and Persistence in Returns to Wealth," Econometrica, Econometric Society, vol. 88(1), pages 115-170, January.
    4. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    5. John Y. Campbell & Luis M. Viceira & Joshua S. White, 2003. "Foreign Currency for Long-Term Investors," Economic Journal, Royal Economic Society, vol. 113(486), pages 1-25, March.
    6. Stephen Satchell & Susan Thorp, 2007. "Scenario Analysis with Recursive Utility: Dynamic Consumption Plans for Charitable Endowments," Research Paper Series 209, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    8. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    9. Jorge Braga de Macedo & Jeffrey Goldstein & David Meerschwam, 1984. "International Portfolio Diversification: Short-Term Financial Assets and Gold," NBER Chapters, in: Exchange Rate Theory and Practice, pages 199-238, National Bureau of Economic Research, Inc.
    10. Pliska, Stanley R. & Ye, Jinchun, 2007. "Optimal life insurance purchase and consumption/investment under uncertain lifetime," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1307-1319, May.
    11. Detemple, Jerome & Sundaresan, Suresh, 1999. "Nontraded Asset Valuation with Portfolio Constraints: A Binomial Approach," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 835-872.
    12. Qian Lin & Frank Riedel, 2021. "Optimal consumption and portfolio choice with ambiguous interest rates and volatility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1189-1202, April.
    13. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    14. Xinfu Chen & Min Dai & Wei Jiang & Cong Qin, 2022. "Asymptotic analysis of long‐term investment with two illiquid and correlated assets," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1133-1169, October.
    15. Annette Vissing-Jorgensen, 2000. "Towards an Explanation of Household Portfolio Choice Heterogeneity: Nonfinancial Income and Participation Cost Structures," Econometric Society World Congress 2000 Contributed Papers 1102, Econometric Society.
    16. Nicole Branger & An Chen & Antje Mahayni & Thai Nguyen, 2023. "Optimal collective investment: an analysis of individual welfare," Mathematics and Financial Economics, Springer, volume 17, number 5, December.
    17. Penikas, Henry, 2010. "Copula-Models in Foreign Exchange Risk-Management of a Bank," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 17(1), pages 62-87.
    18. Sakda Chaiworawitkul & Patrick S. Hagan & Andrew Lesniewski, 2014. "Semiclassical approximation in stochastic optimal control I. Portfolio construction problem," Papers 1406.6090, arXiv.org.
    19. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    20. Akihiko Takahashi & Nakahiro Yoshida, 2003. "An Asymptotic Expansion Scheme for the Optimal Investment Problems," CIRJE F-Series CIRJE-F-248, CIRJE, Faculty of Economics, University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:202:y:2024:i:1:d:10.1007_s10957-023-02324-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.