IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v192y2022i2d10.1007_s10957-021-01981-1.html
   My bibliography  Save this article

A Note on Pointwise Well-Posedness of Set-Valued Optimization Problems

Author

Listed:
  • Kuntal Som

    (Indian Institute of Technology Madras)

  • Vellaichamy Vetrivel

    (Indian Institute of Technology Madras)

Abstract

Well-posedness for optimization problems is a well-known notion and has been studied extensively for scalar, vector, and set-valued optimization problems. For the set-valued case, there are many subdivisions: firstly in terms of pointwise notion and global notion and secondly in terms of the solution concepts, like the vector approach, the set-relation approach, etc. Various definitions of pointwise well-posedness for a set-valued optimization problem in the set-relation approach have been proposed in the literature. Here we do a comparative study and suggest modifications in some existing results. We also introduce a new pointwise well-posedness and discuss its properties and connection with others.

Suggested Citation

  • Kuntal Som & Vellaichamy Vetrivel, 2022. "A Note on Pointwise Well-Posedness of Set-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 628-647, February.
  • Handle: RePEc:spr:joptap:v:192:y:2022:i:2:d:10.1007_s10957-021-01981-1
    DOI: 10.1007/s10957-021-01981-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-021-01981-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-021-01981-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. X. J. Long & J. W. Peng, 2013. "Generalized B-Well-Posedness for Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 612-623, June.
    2. M. Durea, 2007. "Scalarization for pointwise well-posed vectorial problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 409-418, December.
    3. Xian-Jun Long & Jian-Wen Peng & Zai-Yun Peng, 2015. "Scalarization and pointwise well-posedness for set optimization problems," Journal of Global Optimization, Springer, vol. 62(4), pages 763-773, August.
    4. Giovanni P. Crespi & Mansi Dhingra & C. S. Lalitha, 2018. "Pointwise and global well-posedness in set optimization: a direct approach," Annals of Operations Research, Springer, vol. 269(1), pages 149-166, October.
    5. Meenakshi Gupta & Manjari Srivastava, 2019. "Well-posedness and scalarization in set optimization involving ordering cones with possibly empty interior," Journal of Global Optimization, Springer, vol. 73(2), pages 447-463, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuntal Som & V. Vetrivel, 2023. "Global well-posedness of set-valued optimization with application to uncertain problems," Journal of Global Optimization, Springer, vol. 85(2), pages 511-539, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuntal Som & V. Vetrivel, 2023. "Global well-posedness of set-valued optimization with application to uncertain problems," Journal of Global Optimization, Springer, vol. 85(2), pages 511-539, February.
    2. Meenakshi Gupta & Manjari Srivastava, 2020. "Approximate Solutions and Levitin–Polyak Well-Posedness for Set Optimization Using Weak Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 191-208, July.
    3. Giovanni P. Crespi & Mansi Dhingra & C. S. Lalitha, 2018. "Pointwise and global well-posedness in set optimization: a direct approach," Annals of Operations Research, Springer, vol. 269(1), pages 149-166, October.
    4. Yu Han & Kai Zhang & Nan-jing Huang, 2020. "The stability and extended well-posedness of the solution sets for set optimization problems via the Painlevé–Kuratowski convergence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 175-196, February.
    5. S. Khoshkhabar-amiranloo & E. Khorram, 2015. "Pointwise well-posedness and scalarization in set optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 195-210, October.
    6. Meenakshi Gupta & Manjari Srivastava, 2019. "Well-posedness and scalarization in set optimization involving ordering cones with possibly empty interior," Journal of Global Optimization, Springer, vol. 73(2), pages 447-463, February.
    7. Xian-Jun Long & Jian-Wen Peng & Zai-Yun Peng, 2015. "Scalarization and pointwise well-posedness for set optimization problems," Journal of Global Optimization, Springer, vol. 62(4), pages 763-773, August.
    8. M. Bianchi & G. Kassay & R. Pini, 2009. "Well-posedness for vector equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 171-182, August.
    9. Qamrul Hasan Ansari & Pradeep Kumar Sharma, 2022. "Some Properties of Generalized Oriented Distance Function and their Applications to Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 247-279, June.
    10. Onetti Alberto & Verma Sameer, 2008. "Licensing and Business Models," Economics and Quantitative Methods qf0806, Department of Economics, University of Insubria.
    11. X. J. Long & J. W. Peng, 2013. "Generalized B-Well-Posedness for Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 612-623, June.
    12. Rocca Matteo & Papalia Melania, 2008. "Well-posedness in vector optimization and scalarization results," Economics and Quantitative Methods qf0807, Department of Economics, University of Insubria.
    13. Giovanni Paolo Crespi & Andreas H. Hamel & Matteo Rocca & Carola Schrage, 2021. "Set Relations via Families of Scalar Functions and Approximate Solutions in Set Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 361-381, February.
    14. San-hua Wang & Nan-jing Huang & Donal O’Regan, 2013. "Well-posedness for generalized quasi-variational inclusion problems and for optimization problems with constraints," Journal of Global Optimization, Springer, vol. 55(1), pages 189-208, January.
    15. Gang Xiao & Hong Xiao & Sanyang Liu, 2011. "Scalarization and pointwise well-posedness in vector optimization problems," Journal of Global Optimization, Springer, vol. 49(4), pages 561-574, April.
    16. Li Zhu & Fu-quan Xia, 2012. "Scalarization method for Levitin–Polyak well-posedness of vectorial optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(3), pages 361-375, December.
    17. Lam Quoc Anh & Tran Quoc Duy & Dinh Vinh Hien & Daishi Kuroiwa & Narin Petrot, 2020. "Convergence of Solutions to Set Optimization Problems with the Set Less Order Relation," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 416-432, May.
    18. Zi-Ru Zhang & Yang-Dong Xu, 2024. "The Continuity and Convexity of a Nonlinear Scalarization Function with Applications in Set Optimization Problems Involving a Partial Order Relation," Mathematics, MDPI, vol. 12(23), pages 1-22, December.
    19. Y. D. Xu & S. J. Li, 2016. "On the solution continuity of parametric set optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 223-237, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:192:y:2022:i:2:d:10.1007_s10957-021-01981-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.