IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v187y2020i1d10.1007_s10957-020-01747-1.html
   My bibliography  Save this article

A Convex Optimization Approach to Dynamic Programming in Continuous State and Action Spaces

Author

Listed:
  • Insoon Yang

    (Seoul National University)

Abstract

In this paper, a convex optimization-based method is proposed for numerically solving dynamic programs in continuous state and action spaces. The key idea is to approximate the output of the Bellman operator at a particular state by the optimal value of a convex program. The approximate Bellman operator has a computational advantage because it involves a convex optimization problem in the case of control-affine systems and convex costs. Using this feature, we propose a simple dynamic programming algorithm to evaluate the approximate value function at pre-specified grid points by solving convex optimization problems in each iteration. We show that the proposed method approximates the optimal value function with a uniform convergence property in the case of convex optimal value functions. We also propose an interpolation-free design method for a control policy, of which performance converges uniformly to the optimum as the grid resolution becomes finer. When a nonlinear control-affine system is considered, the convex optimization approach provides an approximate policy with a provable suboptimality bound. For general cases, the proposed convex formulation of dynamic programming operators can be modified as a nonconvex bilevel program, in which the inner problem is a linear program, without losing the uniform convergence properties.

Suggested Citation

  • Insoon Yang, 2020. "A Convex Optimization Approach to Dynamic Programming in Continuous State and Action Spaces," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 133-157, October.
  • Handle: RePEc:spr:joptap:v:187:y:2020:i:1:d:10.1007_s10957-020-01747-1
    DOI: 10.1007/s10957-020-01747-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01747-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01747-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hans-Joachim Langen, 1981. "Convergence of Dynamic Programming Models," Mathematics of Operations Research, INFORMS, vol. 6(4), pages 493-512, November.
    2. Yurii Nesterov, 2018. "Lectures on Convex Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-91578-4, December.
    3. John Rust, 1997. "Using Randomization to Break the Curse of Dimensionality," Econometrica, Econometric Society, vol. 65(3), pages 487-516, May.
    4. Naci Saldi & Serdar Yüksel & Tamás Linder, 2017. "On the Asymptotic Optimality of Finite Approximations to Markov Decision Processes with Borel Spaces," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 945-978, November.
    5. Sharon A. Johnson & Jery R. Stedinger & Christine A. Shoemaker & Ying Li & José Alberto Tejada-Guibert, 1993. "Numerical Solution of Continuous-State Dynamic Programs Using Linear and Spline Interpolation," Operations Research, INFORMS, vol. 41(3), pages 484-500, June.
    6. Ward Whitt, 1978. "Approximations of Dynamic Programs, I," Mathematics of Operations Research, INFORMS, vol. 3(3), pages 231-243, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zéphyr, Luckny & Lang, Pascal & Lamond, Bernard F. & Côté, Pascal, 2017. "Approximate stochastic dynamic programming for hydroelectric production planning," European Journal of Operational Research, Elsevier, vol. 262(2), pages 586-601.
    2. Diego Klabjan & Daniel Adelman, 2007. "An Infinite-Dimensional Linear Programming Algorithm for Deterministic Semi-Markov Decision Processes on Borel Spaces," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 528-550, August.
    3. Lars Grüne & Willi Semmler, 2007. "Asset pricing with dynamic programming," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 233-265, May.
    4. Benjamin Van Roy, 2006. "Performance Loss Bounds for Approximate Value Iteration with State Aggregation," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 234-244, May.
    5. William B. Haskell & Rahul Jain & Dileep Kalathil, 2016. "Empirical Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 402-429, May.
    6. Naci Saldi & Serdar Yüksel & Tamás Linder, 2017. "On the Asymptotic Optimality of Finite Approximations to Markov Decision Processes with Borel Spaces," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 945-978, November.
    7. Cervellera, Cristiano & Chen, Victoria C.P. & Wen, Aihong, 2006. "Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1139-1151, June.
    8. Grune, Lars & Semmler, Willi, 2004. "Using dynamic programming with adaptive grid scheme for optimal control problems in economics," Journal of Economic Dynamics and Control, Elsevier, vol. 28(12), pages 2427-2456, December.
    9. Jie Ning & Matthew J. Sobel, 2019. "Easy Affine Markov Decision Processes," Operations Research, INFORMS, vol. 67(6), pages 1719-1737, November.
    10. Alemdar, Nedim M. & Sirakaya, Sibel & Husseinov, Farhad, 2006. "Optimal time aggregation of infinite horizon control problems," Journal of Economic Dynamics and Control, Elsevier, vol. 30(4), pages 569-593, April.
    11. Norets, Andriy & Shimizu, Kenichi, 2024. "Semiparametric Bayesian estimation of dynamic discrete choice models," Journal of Econometrics, Elsevier, vol. 238(2).
    12. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    13. Nikolaj Malchow-Møller & Michael Svarer, 2003. "Estimation of the multinomial logit model with random effects," Applied Economics Letters, Taylor & Francis Journals, vol. 10(7), pages 389-392.
    14. Alexei Onatski & Noah Williams, 2003. "Modeling Model Uncertainty," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1087-1122, September.
    15. A. Scagliotti & P. Colli Franzone, 2022. "A piecewise conservative method for unconstrained convex optimization," Computational Optimization and Applications, Springer, vol. 81(1), pages 251-288, January.
    16. Jiarui Han & Tze Lai & Viktor Spivakovsky, 2006. "Approximate Policy Optimization and Adaptive Control in Regression Models," Computational Economics, Springer;Society for Computational Economics, vol. 27(4), pages 433-452, June.
    17. Mauro Gaggero & Giorgio Gnecco & Marcello Sanguineti, 2013. "Dynamic Programming and Value-Function Approximation in Sequential Decision Problems: Error Analysis and Numerical Results," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 380-416, February.
    18. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    19. Somayeh Moazeni & Warren B. Powell & Boris Defourny & Belgacem Bouzaiene-Ayari, 2017. "Parallel Nonstationary Direct Policy Search for Risk-Averse Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 332-349, May.
    20. Chen, Ruoran & Deng, Tianhu & Huang, Simin & Qin, Ruwen, 2015. "Optimal crude oil procurement under fluctuating price in an oil refinery," European Journal of Operational Research, Elsevier, vol. 245(2), pages 438-445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:187:y:2020:i:1:d:10.1007_s10957-020-01747-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.