IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v184y2020i3d10.1007_s10957-019-01630-8.html
   My bibliography  Save this article

Infimal Convolution and Duality in Problems with Third-Order Discrete and Differential Inclusions

Author

Listed:
  • Elimhan N. Mahmudov

    (Istanbul Technical University
    Institute of Control Systems)

Abstract

This paper is concerned with the Mayer problem for third-order evolution differential inclusions; to this end, first we use auxiliary problems with third-order discrete and discrete-approximate inclusions. In the form of Euler–Lagrange-type inclusions and transversality conditions, necessary and sufficient optimality conditions are derived. The principal idea of obtaining optimal conditions is locally adjoint mappings. Then, applying infimal convolution concept of convex functions, step by step, we construct the dual problems for third-order discrete, discrete-approximate and differential inclusions and prove duality results. It appears that the Euler–Lagrange-type inclusions are duality relations for both primary and dual problems and that the dual problem for discrete-approximate problem makes a bridge between the dual problems of discrete and continuous problems. As a result, the passage to the limit in the dual problem with discrete approximations plays a substantial role in the next investigations, without which it is hardly ever possible to establish any duality to continuous problem. In this way, relying to the described method for computation of the conjugate and support functions of discrete-approximate problems, a Pascal triangle with binomial coefficients can be successfully used for any “higher order” calculations. Thus, to demonstrate this approach, some semilinear problems with discrete and differential inclusions of third order are considered. These problems show that maximization in the dual problems is realized over the set of solutions of the Euler–Lagrange-type discrete/differential inclusions.

Suggested Citation

  • Elimhan N. Mahmudov, 2020. "Infimal Convolution and Duality in Problems with Third-Order Discrete and Differential Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 781-809, March.
  • Handle: RePEc:spr:joptap:v:184:y:2020:i:3:d:10.1007_s10957-019-01630-8
    DOI: 10.1007/s10957-019-01630-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01630-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01630-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elimhan N. Mahmudov, 2018. "Optimization of Mayer Problem with Sturm–Liouville-Type Differential Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 177(2), pages 345-375, May.
    2. V. Jeyakumar & A. M. Rubinov & Z. Y. Wu, 2007. "Generalized Fenchel’s Conjugation Formulas and Duality for Abstract Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 441-458, March.
    3. M. D. Fajardo & J. Vidal, 2018. "Necessary and Sufficient Conditions for Strong Fenchel–Lagrange Duality via a Coupling Conjugation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 57-73, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaoli Yao & Shengjie Li, 2018. "Vector Topical Function, Abstract Convexity and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 717-742, June.
    2. Z. Y. Wu & A. M. Rubinov, 2010. "Global Optimality Conditions for Some Classes of Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 164-185, April.
    3. Satoshi Suzuki & Daishi Kuroiwa, 2012. "Necessary and Sufficient Constraint Qualification for Surrogate Duality," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 366-377, February.
    4. Elimhan N. Mahmudov, 2022. "Optimization of Higher-Order Differential Inclusions with Special Boundary Value Conditions," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 36-55, January.
    5. H. Mohebi & J.-E. Martínez-Legaz & M. Rocco, 2012. "Some criteria for maximal abstract monotonicity," Journal of Global Optimization, Springer, vol. 53(2), pages 137-163, June.
    6. Nesrine Bouhali & Dalila Azzam-Laouir & Manuel D. P. Monteiro Marques, 2022. "Optimal Control of an Evolution Problem Involving Time-Dependent Maximal Monotone Operators," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 59-91, July.
    7. Amar Andjouh & Mohand Ouamer Bibi, 2022. "Adaptive Global Algorithm for Solving Box-Constrained Non-convex Quadratic Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 360-378, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:184:y:2020:i:3:d:10.1007_s10957-019-01630-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.