IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v53y2012i2p137-163.html
   My bibliography  Save this article

Some criteria for maximal abstract monotonicity

Author

Listed:
  • H. Mohebi
  • J.-E. Martínez-Legaz
  • M. Rocco

Abstract

No abstract is available for this item.

Suggested Citation

  • H. Mohebi & J.-E. Martínez-Legaz & M. Rocco, 2012. "Some criteria for maximal abstract monotonicity," Journal of Global Optimization, Springer, vol. 53(2), pages 137-163, June.
  • Handle: RePEc:spr:jglopt:v:53:y:2012:i:2:p:137-163
    DOI: 10.1007/s10898-011-9671-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-011-9671-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-011-9671-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Jeyakumar & A. M. Rubinov & Z. Y. Wu, 2007. "Generalized Fenchel’s Conjugation Formulas and Duality for Abstract Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 441-458, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaoli Yao & Shengjie Li, 2018. "Vector Topical Function, Abstract Convexity and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 717-742, June.
    2. Z. Y. Wu & A. M. Rubinov, 2010. "Global Optimality Conditions for Some Classes of Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 164-185, April.
    3. Elimhan N. Mahmudov, 2020. "Infimal Convolution and Duality in Problems with Third-Order Discrete and Differential Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 781-809, March.
    4. Satoshi Suzuki & Daishi Kuroiwa, 2012. "Necessary and Sufficient Constraint Qualification for Surrogate Duality," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 366-377, February.
    5. Amar Andjouh & Mohand Ouamer Bibi, 2022. "Adaptive Global Algorithm for Solving Box-Constrained Non-convex Quadratic Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 360-378, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:53:y:2012:i:2:p:137-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.