IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v182y2019i3d10.1007_s10957-019-01514-x.html
   My bibliography  Save this article

Stability and Scalarization for a Unified Vector Optimization Problem

Author

Listed:
  • Shiva Kapoor

    (University of Delhi)

  • C. S. Lalitha

    (University of Delhi South Campus)

Abstract

This paper aims at investigating the Painlevé–Kuratowski convergence of solution sets of a sequence of perturbed vector problems, obtained by perturbing the feasible set and the objective function of a unified vector optimization problem, in real normed linear spaces. We establish convergence results, both in the image and given spaces, under the assumptions of domination and strict domination properties. Moreover, scalarization techniques are employed to establish the Painlevé–Kuratowski convergence in terms of the solution sets of a sequence of scalarized problems.

Suggested Citation

  • Shiva Kapoor & C. S. Lalitha, 2019. "Stability and Scalarization for a Unified Vector Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1050-1067, September.
  • Handle: RePEc:spr:joptap:v:182:y:2019:i:3:d:10.1007_s10957-019-01514-x
    DOI: 10.1007/s10957-019-01514-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01514-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01514-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabián Flores-Bazán & Fernando Flores-Bazán & Sigifredo Laengle, 2015. "Characterizing Efficiency on Infinite-dimensional Commodity Spaces with Ordering Cones Having Possibly Empty Interior," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 455-478, February.
    2. Khushboo & C. S. Lalitha, 2018. "Scalarizations for a unified vector optimization problem based on order representing and order preserving properties," Journal of Global Optimization, Springer, vol. 70(4), pages 903-916, April.
    3. E. Miglierina & E. Molho, 2002. "Scalarization and Stability in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 114(3), pages 657-670, September.
    4. C. S. Lalitha & Prashanto Chatterjee, 2012. "Stability for Properly Quasiconvex Vector Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 492-506, November.
    5. C. S. Lalitha & Prashanto Chatterjee, 2012. "Stability and Scalarization of Weak Efficient, Efficient and Henig Proper Efficient Sets Using Generalized Quasiconvexities," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 941-961, December.
    6. X. X. Huang, 2000. "Stability in vector-valued and set-valued optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(2), pages 185-193, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiva Kapoor & C. S. Lalitha, 2021. "Essential stability in unified vector optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 161-175, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiva Kapoor & C. S. Lalitha, 2019. "Stability in unified semi-infinite vector optimization," Journal of Global Optimization, Springer, vol. 74(2), pages 383-399, June.
    2. Xiao-Bing Li & Qi-Lin Wang & Zhi Lin, 2016. "Stability of Set-Valued Optimization Problems with Naturally Quasi-Functions," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 850-863, March.
    3. C. S. Lalitha & Prashanto Chatterjee, 2012. "Stability and Scalarization of Weak Efficient, Efficient and Henig Proper Efficient Sets Using Generalized Quasiconvexities," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 941-961, December.
    4. C. S. Lalitha & Prashanto Chatterjee, 2012. "Stability for Properly Quasiconvex Vector Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 492-506, November.
    5. Khushboo & C. S. Lalitha, 2018. "Scalarizations for a unified vector optimization problem based on order representing and order preserving properties," Journal of Global Optimization, Springer, vol. 70(4), pages 903-916, April.
    6. S. W. Xiang & W. S. Yin, 2007. "Stability Results for Efficient Solutions of Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 385-398, September.
    7. Khushboo & C. S. Lalitha, 2019. "A unified minimal solution in set optimization," Journal of Global Optimization, Springer, vol. 74(1), pages 195-211, May.
    8. C. Gutiérrez & L. Huerga & E. Köbis & C. Tammer, 2021. "A scalarization scheme for binary relations with applications to set-valued and robust optimization," Journal of Global Optimization, Springer, vol. 79(1), pages 233-256, January.
    9. C. S. Lalitha & Prashanto Chatterjee, 2015. "Stability and Scalarization in Vector Optimization Using Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 825-843, September.
    10. Radu Boţ & Sorin-Mihai Grad & Gert Wanka, 2007. "A general approach for studying duality in multiobjective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(3), pages 417-444, June.
    11. Rocca Matteo & Papalia Melania, 2008. "Well-posedness in vector optimization and scalarization results," Economics and Quantitative Methods qf0807, Department of Economics, University of Insubria.
    12. S. J. Li & Y. D. Xu & S. K. Zhu, 2012. "Nonlinear Separation Approach to Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 842-856, September.
    13. Y. D. Xu & S. J. Li, 2013. "Optimality Conditions for Generalized Ky Fan Quasi-Inequalities with Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 663-684, June.
    14. B. Jiménez & V. Novo & A. Vílchez, 2020. "Characterization of set relations through extensions of the oriented distance," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 89-115, February.
    15. Miglierina Enrico & Molho Elena, 2003. "Convergence of the minimal sets under convexity in vector optimization," Economics and Quantitative Methods qf0302, Department of Economics, University of Insubria.
    16. Nguyen Dinh & Miguel A. Goberna & Dang H. Long & Marco A. López-Cerdá, 2019. "New Farkas-Type Results for Vector-Valued Functions: A Non-abstract Approach," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 4-29, July.
    17. Ginchev Ivan & Guerraggio Angelo & Rocca Matteo, 2004. "Isolated minimizers, proper efficiency and stability for C0,1 constrained vector optimization problems," Economics and Quantitative Methods qf0404, Department of Economics, University of Insubria.
    18. Shiva Kapoor & C. S. Lalitha, 2021. "Essential stability in unified vector optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 161-175, May.
    19. Onetti Alberto & Verma Sameer, 2008. "Licensing and Business Models," Economics and Quantitative Methods qf0806, Department of Economics, University of Insubria.
    20. Xu, Y.D. & Li, S.J. & Teo, K.L., 2012. "Vector network equilibrium problems with capacity constraints of arcs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 567-577.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:182:y:2019:i:3:d:10.1007_s10957-019-01514-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.