IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v229y2013i1p29-36.html
   My bibliography  Save this article

Robust aspects of solutions in deterministic multiple objective linear programming

Author

Listed:
  • Georgiev, Pando Gr.
  • Luc, Dinh The
  • Pardalos, Panos M.

Abstract

We study questions of robustness of linear multiple objective problems in the sense of post-optimal analysis, that is, we study conditions under which a given efficient solution remains efficient when the criteria/objective matrix undergoes some alterations. We consider addition or removal of certain criteria, convex combination with another criteria matrix, or small perturbations of its entries. We provide a necessary and sufficient condition for robustness in a verifiable form and give two formulae to compute the radius of robustness.

Suggested Citation

  • Georgiev, Pando Gr. & Luc, Dinh The & Pardalos, Panos M., 2013. "Robust aspects of solutions in deterministic multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 229(1), pages 29-36.
  • Handle: RePEc:eee:ejores:v:229:y:2013:i:1:p:29-36
    DOI: 10.1016/j.ejor.2013.02.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713001707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.02.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harold P. Benson, 1985. "Multiple Objective Linear Programming with Parametric Criteria Coefficients," Management Science, INFORMS, vol. 31(4), pages 461-474, April.
    2. Sitarz, Sebastian, 2008. "Postoptimal analysis in multicriteria linear programming," European Journal of Operational Research, Elsevier, vol. 191(1), pages 7-18, November.
    3. Sebastian Sitarz, 2011. "Sensitivity Analysis Of Weak Efficiency In Multiple Objective Linear Programming," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 28(04), pages 445-455.
    4. Sebastian Sitarz, 2010. "Standard sensitivity analysis and additive tolerance approach in MOLP," Annals of Operations Research, Springer, vol. 181(1), pages 219-232, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriele Eichfelder & Corinna Krüger & Anita Schöbel, 2017. "Decision uncertainty in multiobjective optimization," Journal of Global Optimization, Springer, vol. 69(2), pages 485-510, October.
    2. Schöbel, Anita & Zhou-Kangas, Yue, 2021. "The price of multiobjective robustness: Analyzing solution sets to uncertain multiobjective problems," European Journal of Operational Research, Elsevier, vol. 291(2), pages 782-793.
    3. Botte, Marco & Schöbel, Anita, 2019. "Dominance for multi-objective robust optimization concepts," European Journal of Operational Research, Elsevier, vol. 273(2), pages 430-440.
    4. T. D. Chuong & V. H. Mak-Hau & J. Yearwood & R. Dazeley & M.-T. Nguyen & T. Cao, 2022. "Robust Pareto solutions for convex quadratic multiobjective optimization problems under data uncertainty," Annals of Operations Research, Springer, vol. 319(2), pages 1533-1564, December.
    5. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2018. "Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs," European Journal of Operational Research, Elsevier, vol. 270(1), pages 40-50.
    6. Morteza Rahimi & Majid Soleimani-damaneh, 2020. "Characterization of Norm-Based Robust Solutions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 554-573, May.
    7. Sanaz Sadeghi & S. Morteza Mirdehghan, 2018. "Stability of Local Efficiency in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 591-613, August.
    8. Morteza Rahimi & Majid Soleimani-damaneh, 2023. "Aubin property for solution set in multi-objective programming," Journal of Global Optimization, Springer, vol. 85(2), pages 441-460, February.
    9. Thai Doan Chuong, 2022. "Second-order cone programming relaxations for a class of multiobjective convex polynomial problems," Annals of Operations Research, Springer, vol. 311(2), pages 1017-1033, April.
    10. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2015. "Robust solutions to multi-objective linear programs with uncertain data," European Journal of Operational Research, Elsevier, vol. 242(3), pages 730-743.
    11. Kuhn, K. & Raith, A. & Schmidt, M. & Schöbel, A., 2016. "Bi-objective robust optimisation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 418-431.
    12. Morteza Rahimi & Majid Soleimani-damaneh, 2018. "Robustness in Deterministic Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 137-162, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hladík, Milan & Sitarz, Sebastian, 2013. "Maximal and supremal tolerances in multiobjective linear programming," European Journal of Operational Research, Elsevier, vol. 228(1), pages 93-101.
    2. Sebastian Sitarz, 2013. "Compromise programming with Tchebycheff norm for discrete stochastic orders," Annals of Operations Research, Springer, vol. 211(1), pages 433-446, December.
    3. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.
    4. H. P. Benson & E. Sun, 2000. "Outcome Space Partition of the Weight Set in Multiobjective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 17-36, April.
    5. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2015. "Robust solutions to multi-objective linear programs with uncertain data," European Journal of Operational Research, Elsevier, vol. 242(3), pages 730-743.
    6. H. P. Benson, 1998. "Further Analysis of an Outcome Set-Based Algorithm for Multiple-Objective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 97(1), pages 1-10, April.
    7. F. Ben Abdelaziz & P. Lang & R. Nadeau, 1999. "Dominance and Efficiency in Multicriteria Decision under Uncertainty," Theory and Decision, Springer, vol. 47(3), pages 191-211, December.
    8. H. P. Benson, 1998. "Hybrid Approach for Solving Multiple-Objective Linear Programs in Outcome Space," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 17-35, July.
    9. Pubudu L. W. Jayasekara & Andrew C. Pangia & Margaret M. Wiecek, 2023. "On solving parametric multiobjective quadratic programs with parameters in general locations," Annals of Operations Research, Springer, vol. 320(1), pages 123-172, January.
    10. Sebastian Sitarz, 2010. "Standard sensitivity analysis and additive tolerance approach in MOLP," Annals of Operations Research, Springer, vol. 181(1), pages 219-232, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:229:y:2013:i:1:p:29-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.