IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i9p860-d268090.html
   My bibliography  Save this article

Inertial-Like Subgradient Extragradient Methods for Variational Inequalities and Fixed Points of Asymptotically Nonexpansive and Strictly Pseudocontractive Mappings

Author

Listed:
  • Lu-Chuan Ceng

    (Department of Mathematics, Shanghai Normal University, Shanghai 200234, China)

  • Adrian Petruşel

    (Department of Mathematics, Babes-Bolyai University, Cluj-Napoca 400084, Romania)

  • Ching-Feng Wen

    (Center for Fundamental Science and Research Center for Nonliear Analysis and Optimization, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
    Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan)

  • Jen-Chih Yao

    (Research Center for Interneural Computing, China Medical University Hospital, Taichung 40402, Taiwan)

Abstract

Let VIP indicate the variational inequality problem with Lipschitzian and pseudomonotone operator and let CFPP denote the common fixed-point problem of an asymptotically nonexpansive mapping and a strictly pseudocontractive mapping in a real Hilbert space. Our object in this article is to establish strong convergence results for solving the VIP and CFPP by utilizing an inertial-like gradient-like extragradient method with line-search process. Via suitable assumptions, it is shown that the sequences generated by such a method converge strongly to a common solution of the VIP and CFPP, which also solves a hierarchical variational inequality (HVI).

Suggested Citation

  • Lu-Chuan Ceng & Adrian Petruşel & Ching-Feng Wen & Jen-Chih Yao, 2019. "Inertial-Like Subgradient Extragradient Methods for Variational Inequalities and Fixed Points of Asymptotically Nonexpansive and Strictly Pseudocontractive Mappings," Mathematics, MDPI, vol. 7(9), pages 1-19, September.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:860-:d:268090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/9/860/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/9/860/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rapeepan Kraikaew & Satit Saejung, 2014. "Strong Convergence of the Halpern Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 399-412, November.
    2. H. K. Xu & T. H. Kim, 2003. "Convergence of Hybrid Steepest-Descent Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 185-201, October.
    3. Y. Censor & A. Gibali & S. Reich, 2011. "The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 318-335, February.
    4. Alexander J. Zaslavski, 2016. "Numerical Optimization with Computational Errors," Springer Optimization and Its Applications, Springer, number 978-3-319-30921-7, December.
    5. Zhao-Rong Kong & Lu-Chuan Ceng & Ching-Feng Wen, 2012. "Some Modified Extragradient Methods for Solving Split Feasibility and Fixed Point Problems," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-32, December.
    6. Lu-Chuan Ceng & Qing Yuan, 2019. "Hybrid Mann Viscosity Implicit Iteration Methods for Triple Hierarchical Variational Inequalities, Systems of Variational Inequalities and Fixed Point Problems," Mathematics, MDPI, vol. 7(2), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu-Chuan Ceng & Adrian Petruşel & Jen-Chih Yao, 2019. "On Mann Viscosity Subgradient Extragradient Algorithms for Fixed Point Problems of Finitely Many Strict Pseudocontractions and Variational Inequalities," Mathematics, MDPI, vol. 7(10), pages 1-14, October.
    2. Lu-Chuan Ceng & Yekini Shehu & Jen-Chih Yao, 2022. "Modified Mann Subgradient-like Extragradient Rules for Variational Inequalities and Common Fixed Points Involving Asymptotically Nonexpansive Mappings," Mathematics, MDPI, vol. 10(5), pages 1-20, February.
    3. Lu-Chuan Ceng & Xiaolong Qin & Yekini Shehu & Jen-Chih Yao, 2019. "Mildly Inertial Subgradient Extragradient Method for Variational Inequalities Involving an Asymptotically Nonexpansive and Finitely Many Nonexpansive Mappings," Mathematics, MDPI, vol. 7(10), pages 1-19, September.
    4. Lu-Chuan Ceng & Ching-Feng Wen & Yeong-Cheng Liou & Jen-Chih Yao, 2022. "On Strengthened Inertial-Type Subgradient Extragradient Rule with Adaptive Step Sizes for Variational Inequalities and Fixed Points of Asymptotically Nonexpansive Mappings," Mathematics, MDPI, vol. 10(6), pages 1-21, March.
    5. Jamilu Abubakar & Poom Kumam & Habib ur Rehman & Abdulkarim Hassan Ibrahim, 2020. "Inertial Iterative Schemes with Variable Step Sizes for Variational Inequality Problem Involving Pseudomonotone Operator," Mathematics, MDPI, vol. 8(4), pages 1-25, April.
    6. Timilehin O. Alakoya & Oluwatosin T. Mewomo & Yekini Shehu, 2022. "Strong convergence results for quasimonotone variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 249-279, April.
    7. Gang Cai & Aviv Gibali & Olaniyi S. Iyiola & Yekini Shehu, 2018. "A New Double-Projection Method for Solving Variational Inequalities in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 219-239, July.
    8. Xin He & Nan-jing Huang & Xue-song Li, 2022. "Modified Projection Methods for Solving Multi-valued Variational Inequality without Monotonicity," Networks and Spatial Economics, Springer, vol. 22(2), pages 361-377, June.
    9. Yun-Ling Cui & Lu-Chuan Ceng & Fang-Fei Zhang & Cong-Shan Wang & Jian-Ye Li & Hui-Ying Hu & Long He, 2022. "Modified Mann-Type Subgradient Extragradient Rules for Variational Inequalities and Common Fixed Points Implicating Countably Many Nonexpansive Operators," Mathematics, MDPI, vol. 10(11), pages 1-26, June.
    10. Tingting Cai & Dongmin Yu & Huanan Liu & Fengkai Gao, 2022. "RETRACTED: Computational Analysis of Variational Inequalities Using Mean Extra-Gradient Approach," Mathematics, MDPI, vol. 10(13), pages 1-14, July.
    11. Lu-Chuan Ceng & Xiaoye Yang, 2019. "Some Mann-Type Implicit Iteration Methods for Triple Hierarchical Variational Inequalities, Systems Variational Inequalities and Fixed Point Problems," Mathematics, MDPI, vol. 7(3), pages 1-20, February.
    12. Lateef Olakunle Jolaoso & Adeolu Taiwo & Timilehin Opeyemi Alakoya & Oluwatosin Temitope Mewomo, 2020. "A Strong Convergence Theorem for Solving Pseudo-monotone Variational Inequalities Using Projection Methods," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 744-766, June.
    13. Chinedu Izuchukwu & Yekini Shehu & Jen-Chih Yao, 2022. "New inertial forward-backward type for variational inequalities with Quasi-monotonicity," Journal of Global Optimization, Springer, vol. 84(2), pages 441-464, October.
    14. Cholamjiak, Watcharaporn & Suparatulatorn, Raweerote, 2023. "Strong convergence of a modified extragradient algorithm to solve pseudomonotone equilibrium and application to classification of diabetes mellitus," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    15. Bingnan Jiang & Yuanheng Wang & Jen-Chih Yao, 2021. "Multi-Step Inertial Regularized Methods for Hierarchical Variational Inequality Problems Involving Generalized Lipschitzian Mappings," Mathematics, MDPI, vol. 9(17), pages 1-20, August.
    16. Yonghong Yao & Ke Wang & Xiaowei Qin & Li-Jun Zhu, 2019. "Extension of Extragradient Techniques for Variational Inequalities," Mathematics, MDPI, vol. 7(2), pages 1-11, January.
    17. Ying Liu & Hang Kong, 2019. "Strong convergence theorems for relatively nonexpansive mappings and Lipschitz-continuous monotone mappings in Banach spaces," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(4), pages 1049-1065, December.
    18. Shin-ya Matsushita & Li Xu, 2014. "On Finite Convergence of Iterative Methods for Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 701-715, June.
    19. Yanlai Song & Omar Bazighifan, 2022. "A New Alternative Regularization Method for Solving Generalized Equilibrium Problems," Mathematics, MDPI, vol. 10(8), pages 1-14, April.
    20. Yanlai Song & Omar Bazighifan, 2022. "Modified Inertial Subgradient Extragradient Method with Regularization for Variational Inequality and Null Point Problems," Mathematics, MDPI, vol. 10(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:860-:d:268090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.