IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i17p2103-d625975.html
   My bibliography  Save this article

Multi-Step Inertial Regularized Methods for Hierarchical Variational Inequality Problems Involving Generalized Lipschitzian Mappings

Author

Listed:
  • Bingnan Jiang

    (College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China)

  • Yuanheng Wang

    (College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China)

  • Jen-Chih Yao

    (College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China)

Abstract

In this paper, we construct two multi-step inertial regularized methods for hierarchical inequality problems involving generalized Lipschitzian and hemicontinuous mappings in Hilbert spaces. Then we present two strong convergence theorems and some numerical experiments to show the effectiveness and feasibility of our new iterative methods.

Suggested Citation

  • Bingnan Jiang & Yuanheng Wang & Jen-Chih Yao, 2021. "Multi-Step Inertial Regularized Methods for Hierarchical Variational Inequality Problems Involving Generalized Lipschitzian Mappings," Mathematics, MDPI, vol. 9(17), pages 1-20, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2103-:d:625975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/17/2103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/17/2103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong-Kun Xu, 2011. "Averaged Mappings and the Gradient-Projection Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 360-378, August.
    2. Q. L. Dong & J. Z. Huang & X. H. Li & Y. J. Cho & Th. M. Rassias, 2019. "MiKM: multi-step inertial Krasnosel’skiǐ–Mann algorithm and its applications," Journal of Global Optimization, Springer, vol. 73(4), pages 801-824, April.
    3. Q. L. Dong & Y. J. Cho & L. L. Zhong & Th. M. Rassias, 2018. "Inertial projection and contraction algorithms for variational inequalities," Journal of Global Optimization, Springer, vol. 70(3), pages 687-704, March.
    4. Rapeepan Kraikaew & Satit Saejung, 2014. "Strong Convergence of the Halpern Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 399-412, November.
    5. Y. Censor & A. Gibali & S. Reich, 2011. "The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 318-335, February.
    6. Chanjuan Pan & Yuanheng Wang, 2019. "Convergence Theorems for Modified Inertial Viscosity Splitting Methods in Banach Spaces," Mathematics, MDPI, vol. 7(2), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanheng Wang & Tiantian Xu & Jen-Chih Yao & Bingnan Jiang, 2022. "Self-Adaptive Method and Inertial Modification for Solving the Split Feasibility Problem and Fixed-Point Problem of Quasi-Nonexpansive Mapping," Mathematics, MDPI, vol. 10(9), pages 1-15, May.
    2. Yuanheng Wang & Miaoqing Li & Chengru Yao & Bingnan Jiang, 2023. "Two New Modified Regularized Methods for Solving the Variational Inclusion and Null Point Problems," Mathematics, MDPI, vol. 11(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamilu Abubakar & Poom Kumam & Habib ur Rehman & Abdulkarim Hassan Ibrahim, 2020. "Inertial Iterative Schemes with Variable Step Sizes for Variational Inequality Problem Involving Pseudomonotone Operator," Mathematics, MDPI, vol. 8(4), pages 1-25, April.
    2. Xin He & Nan-jing Huang & Xue-song Li, 2022. "Modified Projection Methods for Solving Multi-valued Variational Inequality without Monotonicity," Networks and Spatial Economics, Springer, vol. 22(2), pages 361-377, June.
    3. Dang Van Hieu & Jean Jacques Strodiot & Le Dung Muu, 2020. "An Explicit Extragradient Algorithm for Solving Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 476-503, May.
    4. Ming Tian & Meng-Ying Tong, 2019. "Extension and Application of the Yamada Iteration Algorithm in Hilbert Spaces," Mathematics, MDPI, vol. 7(3), pages 1-13, February.
    5. Timilehin O. Alakoya & Oluwatosin T. Mewomo & Yekini Shehu, 2022. "Strong convergence results for quasimonotone variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 249-279, April.
    6. Q. L. Dong & J. Z. Huang & X. H. Li & Y. J. Cho & Th. M. Rassias, 2019. "MiKM: multi-step inertial Krasnosel’skiǐ–Mann algorithm and its applications," Journal of Global Optimization, Springer, vol. 73(4), pages 801-824, April.
    7. Gang Cai & Aviv Gibali & Olaniyi S. Iyiola & Yekini Shehu, 2018. "A New Double-Projection Method for Solving Variational Inequalities in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 219-239, July.
    8. Seifu Endris Yimer & Poom Kumam & Anteneh Getachew Gebrie & Rabian Wangkeeree, 2019. "Inertial Method for Bilevel Variational Inequality Problems with Fixed Point and Minimizer Point Constraints," Mathematics, MDPI, vol. 7(9), pages 1-21, September.
    9. Bing Tan & Shanshan Xu & Songxiao Li, 2020. "Modified Inertial Hybrid and Shrinking Projection Algorithms for Solving Fixed Point Problems," Mathematics, MDPI, vol. 8(2), pages 1-12, February.
    10. Lu-Chuan Ceng & Yekini Shehu & Jen-Chih Yao, 2022. "Modified Mann Subgradient-like Extragradient Rules for Variational Inequalities and Common Fixed Points Involving Asymptotically Nonexpansive Mappings," Mathematics, MDPI, vol. 10(5), pages 1-20, February.
    11. Yuanheng Wang & Mingyue Yuan & Bingnan Jiang, 2021. "Multi-Step Inertial Hybrid and Shrinking Tseng’s Algorithm with Meir–Keeler Contractions for Variational Inclusion Problems," Mathematics, MDPI, vol. 9(13), pages 1-13, July.
    12. Lateef Olakunle Jolaoso & Maggie Aphane, 2020. "A Generalized Viscosity Inertial Projection and Contraction Method for Pseudomonotone Variational Inequality and Fixed Point Problems," Mathematics, MDPI, vol. 8(11), pages 1-29, November.
    13. Timilehin Opeyemi Alakoya & Oluwatosin Temitope Mewomo, 2024. "Strong Convergent Inertial Two-subgradient Extragradient Method for Finding Minimum-norm Solutions of Variational Inequality Problems," Networks and Spatial Economics, Springer, vol. 24(2), pages 425-459, June.
    14. Bing Tan & Xiaolong Qin & Jen-Chih Yao, 2022. "Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems," Journal of Global Optimization, Springer, vol. 82(3), pages 523-557, March.
    15. Tingting Cai & Dongmin Yu & Huanan Liu & Fengkai Gao, 2022. "RETRACTED: Computational Analysis of Variational Inequalities Using Mean Extra-Gradient Approach," Mathematics, MDPI, vol. 10(13), pages 1-14, July.
    16. Hongwei Liu & Jun Yang, 2020. "Weak convergence of iterative methods for solving quasimonotone variational inequalities," Computational Optimization and Applications, Springer, vol. 77(2), pages 491-508, November.
    17. Gang Cai & Qiao-Li Dong & Yu Peng, 2021. "Strong Convergence Theorems for Solving Variational Inequality Problems with Pseudo-monotone and Non-Lipschitz Operators," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 447-472, February.
    18. Lateef Olakunle Jolaoso & Adeolu Taiwo & Timilehin Opeyemi Alakoya & Oluwatosin Temitope Mewomo, 2020. "A Strong Convergence Theorem for Solving Pseudo-monotone Variational Inequalities Using Projection Methods," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 744-766, June.
    19. Chinedu Izuchukwu & Yekini Shehu & Jen-Chih Yao, 2022. "New inertial forward-backward type for variational inequalities with Quasi-monotonicity," Journal of Global Optimization, Springer, vol. 84(2), pages 441-464, October.
    20. Lu-Chuan Ceng & Xiaolong Qin & Yekini Shehu & Jen-Chih Yao, 2019. "Mildly Inertial Subgradient Extragradient Method for Variational Inequalities Involving an Asymptotically Nonexpansive and Finitely Many Nonexpansive Mappings," Mathematics, MDPI, vol. 7(10), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2103-:d:625975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.