IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v138y2008i3d10.1007_s10957-008-9396-0.html
   My bibliography  Save this article

Wolfe Duality for Interval-Valued Optimization

Author

Listed:
  • H. C. Wu

    (National Kaohsiung Normal University)

Abstract

Weak and strong duality theorems in interval-valued optimization problem based on the formulation of the Wolfe primal and dual problems are derived. The solution concepts of the primal and dual problems are based on the concept of nondominated solution employed in vector optimization problems. The concepts of no duality gap in the weak and strong sense are also introduced, and strong duality theorems in the weak and strong sense are then derived.

Suggested Citation

  • H. C. Wu, 2008. "Wolfe Duality for Interval-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 138(3), pages 497-509, September.
  • Handle: RePEc:spr:joptap:v:138:y:2008:i:3:d:10.1007_s10957-008-9396-0
    DOI: 10.1007/s10957-008-9396-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-008-9396-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-008-9396-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soyster, A. L., 1979. "Inexact linear programming with generalized resource sets," European Journal of Operational Research, Elsevier, vol. 3(4), pages 316-321, July.
    2. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    3. Wu, Hsien-Chung, 2007. "The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function," European Journal of Operational Research, Elsevier, vol. 176(1), pages 46-59, January.
    4. David J. Thuente, 1980. "Technical Note—Duality Theory for Generalized Linear Programs with Computational Methods," Operations Research, INFORMS, vol. 28(4), pages 1005-1011, August.
    5. James E. Falk, 1976. "Technical Note—Exact Solutions of Inexact Linear Programs," Operations Research, INFORMS, vol. 24(4), pages 783-787, August.
    6. A. L. Soyster, 1974. "Technical Note—A Duality Theory for Convex Programming with Set-Inclusive Constraints," Operations Research, INFORMS, vol. 22(4), pages 892-898, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. K. Bhurjee & G. Panda, 2016. "Sufficient optimality conditions and duality theory for interval optimization problem," Annals of Operations Research, Springer, vol. 243(1), pages 335-348, August.
    2. Yating Guo & Guoju Ye & Wei Liu & Dafang Zhao & Savin Treanţǎ, 2021. "Optimality Conditions and Duality for a Class of Generalized Convex Interval-Valued Optimization Problems," Mathematics, MDPI, vol. 9(22), pages 1-14, November.
    3. B. Japamala Rani & Krishna Kummari, 2023. "Duality for fractional interval-valued optimization problem via convexificator," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 481-500, March.
    4. Khoirunnisa Rohadatul Aisy Muslihin & Endang Rusyaman & Diah Chaerani, 2022. "Conic Duality for Multi-Objective Robust Optimization Problem," Mathematics, MDPI, vol. 10(21), pages 1-22, October.
    5. Hsien-Chung Wu, 2011. "Duality Theory in Interval-Valued Linear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 298-316, August.
    6. Guo, Yating & Ye, Guoju & Liu, Wei & Zhao, Dafang & Treanţă, Savin, 2022. "On symmetric gH-derivative: Applications to dual interval-valued optimization problems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. T. Antczak, 2018. "Exactness Property of the Exact Absolute Value Penalty Function Method for Solving Convex Nondifferentiable Interval-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 205-224, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. C. Wu, 2010. "Duality Theory for Optimization Problems with Interval-Valued Objective Functions," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 615-628, March.
    2. A. K. Bhurjee & G. Panda, 2016. "Sufficient optimality conditions and duality theory for interval optimization problem," Annals of Operations Research, Springer, vol. 243(1), pages 335-348, August.
    3. Hsien-Chung Wu, 2011. "Duality Theory in Interval-Valued Linear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 298-316, August.
    4. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    5. Bram L. Gorissen & Hans Blanc & Dick den Hertog & Aharon Ben-Tal, 2014. "Technical Note---Deriving Robust and Globalized Robust Solutions of Uncertain Linear Programs with General Convex Uncertainty Sets," Operations Research, INFORMS, vol. 62(3), pages 672-679, June.
    6. Gorissen, B.L. & Ben-Tal, A. & Blanc, J.P.C. & den Hertog, D., 2012. "A New Method for Deriving Robust and Globalized Robust Solutions of Uncertain Linear Conic Optimization Problems Having General Convex Uncertainty Sets," Discussion Paper 2012-076, Tilburg University, Center for Economic Research.
    7. Soyster, A.L. & Murphy, F.H., 2013. "A unifying framework for duality and modeling in robust linear programs," Omega, Elsevier, vol. 41(6), pages 984-997.
    8. Robin Vujanic & Paul Goulart & Manfred Morari, 2016. "Robust Optimization of Schedules Affected by Uncertain Events," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 1033-1054, December.
    9. K S Park, 2007. "Efficiency bounds and efficiency classifications in DEA with imprecise data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 533-540, April.
    10. Soyster, A.L. & Murphy, F.H., 2017. "Data driven matrix uncertainty for robust linear programming," Omega, Elsevier, vol. 70(C), pages 43-57.
    11. João Flávio de Freitas Almeida & Samuel Vieira Conceição & Luiz Ricardo Pinto & Ricardo Saraiva de Camargo & Gilberto de Miranda Júnior, 2018. "Flexibility evaluation of multiechelon supply chains," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-27, March.
    12. Rekha R. Jaichander & Izhar Ahmad & Krishna Kummari & Suliman Al-Homidan, 2022. "Robust Nonsmooth Interval-Valued Optimization Problems Involving Uncertainty Constraints," Mathematics, MDPI, vol. 10(11), pages 1-19, May.
    13. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    14. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    15. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    16. A. Rufián-Lizana & Y. Chalco-Cano & G. Ruiz-Garzón & H. Román-Flores, 2014. "On some characterizations of preinvex fuzzy mappings," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 771-783, July.
    17. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    18. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    19. Rashed Khanjani-Shiraz & Ali Babapour-Azar & Zohreh Hosseini-Noudeh & Panos M. Pardalos, 2022. "Distributionally robust maximum probability shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 140-167, January.
    20. Khoirunnisa Rohadatul Aisy Muslihin & Endang Rusyaman & Diah Chaerani, 2022. "Conic Duality for Multi-Objective Robust Optimization Problem," Mathematics, MDPI, vol. 10(21), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:138:y:2008:i:3:d:10.1007_s10957-008-9396-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.