IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v176y2018i1d10.1007_s10957-017-1193-1.html
   My bibliography  Save this article

Solution Existence in Bifunction-Set Optimization

Author

Listed:
  • Pham Huu Sach

    (Vietnam Academy of Science and Technology)

Abstract

This paper establishes a bridge between set optimization problems and vector Ky Fan inequality problems. We introduce a general model, called the bifunction-set optimization problem, that provides a unifying framework for the above-mentioned problems. An existence result in our model is obtained, with the help of KKM–Fan’s lemma. As applications, we derive some new or sharper existence results for set optimization problems and generalized vector Ky Fan inequalities with efficient solutions.

Suggested Citation

  • Pham Huu Sach, 2018. "Solution Existence in Bifunction-Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 1-16, January.
  • Handle: RePEc:spr:joptap:v:176:y:2018:i:1:d:10.1007_s10957-017-1193-1
    DOI: 10.1007/s10957-017-1193-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1193-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1193-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yannelis, Nicholas C. & Prabhakar, N. D., 1983. "Existence of maximal elements and equilibria in linear topological spaces," Journal of Mathematical Economics, Elsevier, vol. 12(3), pages 233-245, December.
    2. Werner Oettli & Dirk Schläger, 1998. "Existence of equilibria for monotone multivalued mappings," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 219-228, November.
    3. K. R. Kazmi & S. A. Khan, 2009. "Existence of Solutions to a Generalized System," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 355-361, August.
    4. J. Y. Fu, 2006. "Stampacchia Generalized Vector Quasiequilibrium Problems and Vector Saddle Points," Journal of Optimization Theory and Applications, Springer, vol. 128(3), pages 605-619, March.
    5. J. Y. Fu & S. H. Wang & Z. D. Huang, 2007. "New Type of Generalized Vector Quasiequilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 643-652, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pham Huu Sach & Le Anh Tuan, 2022. "Existence of Solutions of Bifunction-Set Optimization Problems in Metric Spaces," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 195-225, January.
    2. Pham Huu Sach & Le Anh Tuan, 2021. "Semicontinuity Property of Approximate Solution Mappings in Bifunction-Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 202-228, October.
    3. Pham Huu Sach, 2018. "Stability Property in Bifunction-Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(2), pages 376-398, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pham Huu Sach & Le Anh Tuan, 2022. "Existence of Solutions of Bifunction-Set Optimization Problems in Metric Spaces," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 195-225, January.
    2. Gábor Kassay & Mihaela Miholca & Nguyen The Vinh, 2016. "Vector Quasi-Equilibrium Problems for the Sum of Two Multivalued Mappings," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 424-442, May.
    3. P. H. Sach, 2008. "On a Class of Generalized Vector Quasiequilibrium Problems with Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 337-350, November.
    4. Duggan, John, 2011. "General conditions for the existence of maximal elements via the uncovered set," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 755-759.
    5. Suhel Ahmad Khan & Jia-Wei Chen, 2015. "Gap Functions and Error Bounds for Generalized Mixed Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 767-776, September.
    6. Robert M. Anderson & Haosui Duanmu & M. Ali Khan & Metin Uyanik, 2022. "Walrasian equilibrium theory with and without free-disposal: theorems and counterexamples in an infinite-agent context," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 387-412, April.
    7. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    8. Gerasímou, Georgios, 2010. "Consumer theory with bounded rational preferences," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 708-714, September.
    9. Charalambos Aliprantis & Rabee Tourky, 2009. "Equilibria in incomplete assets economies with infinite dimensional spot markets," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 221-262, February.
    10. Florenzano Monique, 1991. "Quasiequilibria in abstract economies application to the overlapping generations models," CEPREMAP Working Papers (Couverture Orange) 9117, CEPREMAP.
    11. Llinares, Juan-Vicente, 1998. "Unified treatment of the problem of existence of maximal elements in binary relations: a characterization," Journal of Mathematical Economics, Elsevier, vol. 29(3), pages 285-302, April.
    12. Tian, Guoqiang, 1991. "Generalized quasi-variational-like inequality problem," MPRA Paper 41219, University Library of Munich, Germany, revised 26 May 1992.
    13. Monica Patriche, 2013. "Fixed Point and Equilibrium Theorems in a Generalized Convexity Framework," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 701-715, March.
    14. D. Won & G. Hahn & N. Yannelis, 2008. "Capital market equilibrium without riskless assets: heterogeneous expectations," Annals of Finance, Springer, vol. 4(2), pages 183-195, March.
    15. Prokopovych, Pavlo & Yannelis, Nicholas C., 2023. "On monotone pure-strategy Bayesian-Nash equilibria of a generalized contest," Games and Economic Behavior, Elsevier, vol. 140(C), pages 348-362.
    16. P. H. Sach & L. A. Tuan, 2007. "Existence Results for Set-Valued Vector Quasiequilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 229-240, May.
    17. Phan Khanh & Vo Long, 2014. "Invariant-point theorems and existence of solutions to optimization-related problems," Journal of Global Optimization, Springer, vol. 58(3), pages 545-564, March.
    18. Prokopovych, Pavlo & Yannelis, Nicholas C., 2019. "On monotone approximate and exact equilibria of an asymmetric first-price auction with affiliated private information," Journal of Economic Theory, Elsevier, vol. 184(C).
    19. M. Ali Khan & Metin Uyanık, 2021. "Topological connectedness and behavioral assumptions on preferences: a two-way relationship," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 411-460, March.
    20. Andrikopoulos, Athanasios & Zacharias, Eleftherios, 2008. "General solutions for choice sets: The Generalized Optimal-Choice Axiom set," MPRA Paper 11645, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:176:y:2018:i:1:d:10.1007_s10957-017-1193-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.