IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v192y2022i1d10.1007_s10957-021-01958-0.html
   My bibliography  Save this article

Existence of Solutions of Bifunction-Set Optimization Problems in Metric Spaces

Author

Listed:
  • Pham Huu Sach

    (Vietnam Academy of Science and Technology)

  • Le Anh Tuan

    (Nong Lam University)

Abstract

Sufficient conditions are given for the existence of solutions of bifunction-set optimization problems, whose underlying sets are complete metric spaces. The main result of this paper is formulated in Theorem 3.1, with the help of some new data. The advantage of introducing the new data is that, by choosing suitable new data, we can obtain existence results with assumptions, that are imposed directly on the objective maps, or that are formulated via scalarization. The main result is applied successfully to Kuroiwa set optimization problems and Ky Fan vector inequality problems. We also discuss equivalences between the existence of solutions of the bifunction-set optimization problem, an Ekeland-type variational principle and a Caristi-type fixed point theorem. Examples are provided.

Suggested Citation

  • Pham Huu Sach & Le Anh Tuan, 2022. "Existence of Solutions of Bifunction-Set Optimization Problems in Metric Spaces," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 195-225, January.
  • Handle: RePEc:spr:joptap:v:192:y:2022:i:1:d:10.1007_s10957-021-01958-0
    DOI: 10.1007/s10957-021-01958-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-021-01958-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-021-01958-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pham Huu Sach & Le Anh Tuan, 2013. "New Scalarizing Approach to the Stability Analysis in Parametric Generalized Ky Fan Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 347-364, May.
    2. Yannelis, Nicholas C. & Prabhakar, N. D., 1983. "Existence of maximal elements and equilibria in linear topological spaces," Journal of Mathematical Economics, Elsevier, vol. 12(3), pages 233-245, December.
    3. Pham Huu Sach, 2018. "Solution Existence in Bifunction-Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 1-16, January.
    4. J. Y. Fu, 2006. "Stampacchia Generalized Vector Quasiequilibrium Problems and Vector Saddle Points," Journal of Optimization Theory and Applications, Springer, vol. 128(3), pages 605-619, March.
    5. Pham Huu Sach, 2018. "Stability Property in Bifunction-Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(2), pages 376-398, May.
    6. J. Y. Fu & S. H. Wang & Z. D. Huang, 2007. "New Type of Generalized Vector Quasiequilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 643-652, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pham Huu Sach, 2018. "Solution Existence in Bifunction-Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 1-16, January.
    2. Pham Huu Sach & Le Anh Tuan, 2021. "Semicontinuity Property of Approximate Solution Mappings in Bifunction-Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 202-228, October.
    3. Pham Huu Sach, 2018. "Stability Property in Bifunction-Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(2), pages 376-398, May.
    4. Robert M. Anderson & Haosui Duanmu & M. Ali Khan & Metin Uyanik, 2022. "Walrasian equilibrium theory with and without free-disposal: theorems and counterexamples in an infinite-agent context," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 387-412, April.
    5. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    6. Llinares, Juan-Vicente, 1998. "Unified treatment of the problem of existence of maximal elements in binary relations: a characterization," Journal of Mathematical Economics, Elsevier, vol. 29(3), pages 285-302, April.
    7. Tian, Guoqiang, 1991. "Generalized quasi-variational-like inequality problem," MPRA Paper 41219, University Library of Munich, Germany, revised 26 May 1992.
    8. Monica Patriche, 2013. "Fixed Point and Equilibrium Theorems in a Generalized Convexity Framework," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 701-715, March.
    9. Prokopovych, Pavlo & Yannelis, Nicholas C., 2023. "On monotone pure-strategy Bayesian-Nash equilibria of a generalized contest," Games and Economic Behavior, Elsevier, vol. 140(C), pages 348-362.
    10. P. H. Sach & L. A. Tuan, 2007. "Existence Results for Set-Valued Vector Quasiequilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 229-240, May.
    11. M. Ali Khan & Metin Uyanık, 2021. "Topological connectedness and behavioral assumptions on preferences: a two-way relationship," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 411-460, March.
    12. Jean Guillaume Forand & Metin Uyanık, 2019. "Fixed-point approaches to the proof of the Bondareva–Shapley Theorem," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(1), pages 117-124, May.
    13. Pavlo Prokopovych, 2010. "Domain L-Majorization and Equilibrium Existence in Discontinuous Games," Discussion Papers 31, Kyiv School of Economics, revised May 2011.
    14. Z. Yang & Y. J. Pu, 2011. "Essential Stability of Solutions for Maximal Element Theorem with Applications," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 284-297, August.
    15. Aliprantis, Charalambos D. & Tourky, Rabee & Yannelis, Nicholas C., 2001. "A Theory of Value with Non-linear Prices: Equilibrium Analysis beyond Vector Lattices," Journal of Economic Theory, Elsevier, vol. 100(1), pages 22-72, September.
    16. Yang, Zhe & Yuan, George Xianzhi, 2019. "Some generalizations of Zhao’s theorem: Hybrid solutions and weak hybrid solutions for games with nonordered preferences," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 94-100.
    17. Tian, Guoqiang & Zhou, Jianxin, 1995. "Transfer continuities, generalizations of the Weierstrass and maximum theorems: A full characterization," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 281-303.
    18. Yves Balasko & Mich Tvede, 2010. "General equilibrium without utility functions: how far to go?," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 45(1), pages 201-225, October.
    19. John Duggan, 2011. "General Conditions for Existence of Maximal Elements via the Uncovered Set," RCER Working Papers 563, University of Rochester - Center for Economic Research (RCER).
    20. M. Ali Khan & Metin Uyanik, 2021. "The Yannelis–Prabhakar theorem on upper semi-continuous selections in paracompact spaces: extensions and applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 799-840, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:192:y:2022:i:1:d:10.1007_s10957-021-01958-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.