IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v48y1998i2p219-228.html
   My bibliography  Save this article

Existence of equilibria for monotone multivalued mappings

Author

Listed:
  • Werner Oettli
  • Dirk Schläger

Abstract

Using a particular kind of pseudomonotonicity for multivalued mappings, an existence result is proved for equilibria, variational inequalities, and a combination of both. Copyright Springer-Verlag Berlin Heidelberg 1998

Suggested Citation

  • Werner Oettli & Dirk Schläger, 1998. "Existence of equilibria for monotone multivalued mappings," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 219-228, November.
  • Handle: RePEc:spr:mathme:v:48:y:1998:i:2:p:219-228
    DOI: 10.1007/s001860050024
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001860050024
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001860050024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L.J. Lin & Q.H. Ansari & J.Y. Wu, 2003. "Geometric Properties and Coincidence Theorems with Applications to Generalized Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 117(1), pages 121-137, April.
    2. X. P. Ding & J. Y. Park, 2004. "Generalized Vector Equilibrium Problems in Generalized Convex Spaces," Journal of Optimization Theory and Applications, Springer, vol. 120(2), pages 327-353, February.
    3. L. J. Lin & Z. T. Yu & G. Kassay, 2002. "Existence of Equilibria for Multivalued Mappings and Its Application to Vectorial Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 114(1), pages 189-208, July.
    4. P. H. Sach, 2008. "On a Class of Generalized Vector Quasiequilibrium Problems with Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 337-350, November.
    5. G. Y. Chen & X. Q. Yang, 2002. "Characterizations of Variable Domination Structures via Nonlinear Scalarization," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 97-110, January.
    6. M. Fakhar & J. Zafarani, 2008. "Generalized Symmetric Vector Quasiequilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 397-409, March.
    7. Jian-Wen Peng & Soon-Yi Wu & Yan Wang, 2012. "Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems with functional constraints," Journal of Global Optimization, Springer, vol. 52(4), pages 779-795, April.
    8. Mircea Balaj, 2021. "Intersection theorems for generalized weak KKM set‐valued mappings with applications in optimization," Mathematische Nachrichten, Wiley Blackwell, vol. 294(7), pages 1262-1276, July.
    9. S. H. Hou & H. Yu & G. Y. Chen, 2003. "On Vector Quasi-Equilibrium Problems with Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 119(3), pages 485-498, December.
    10. Pham Huu Sach, 2018. "Solution Existence in Bifunction-Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 1-16, January.
    11. Gábor Kassay & Mihaela Miholca & Nguyen The Vinh, 2016. "Vector Quasi-Equilibrium Problems for the Sum of Two Multivalued Mappings," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 424-442, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:48:y:1998:i:2:p:219-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.