IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v171y2016i2d10.1007_s10957-016-0969-z.html
   My bibliography  Save this article

Semicoercive Variational Inequalities: From Existence to Numerical Solution of Nonmonotone Contact Problems

Author

Listed:
  • Nina Ovcharova

    (Universität der Bundeswehr München)

  • Joachim Gwinner

    (Universität der Bundeswehr München)

Abstract

In this paper, we present a novel numerical solution procedure for semicoercive hemivariational inequalities. As a concrete example, we consider a unilateral semicoercive contact problem with nonmonotone friction modeling the deformation of a linear elastic block in a rail, and provide numerical results for benchmark tests.

Suggested Citation

  • Nina Ovcharova & Joachim Gwinner, 2016. "Semicoercive Variational Inequalities: From Existence to Numerical Solution of Nonmonotone Contact Problems," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 422-439, November.
  • Handle: RePEc:spr:joptap:v:171:y:2016:i:2:d:10.1007_s10957-016-0969-z
    DOI: 10.1007/s10957-016-0969-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-016-0969-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-016-0969-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dominikus Noll, 2014. "Convergence of Non-smooth Descent Methods Using the Kurdyka–Łojasiewicz Inequality," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 553-572, February.
    2. A. Lahmdani & O. Chadli & J. C. Yao, 2014. "Existence of Solutions for Noncoercive Hemivariational Inequalities by an Equilibrium Approach Under Pseudomonotone Perturbation," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 49-66, January.
    3. O. Chadli & Z. Liu & J. C. Yao, 2007. "Applications of Equilibrium Problems to a Class of Noncoercive Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 89-110, January.
    4. Nina Ovcharova & Joachim Gwinner, 2014. "A Study of Regularization Techniques of Nondifferentiable Optimization in View of Application to Hemivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 754-778, September.
    5. Guo-ji Tang & Nan-jing Huang, 2013. "Existence theorems of the variational-hemivariational inequalities," Journal of Global Optimization, Springer, vol. 56(2), pages 605-622, June.
    6. O. Chadli & S. Schaible & J. C. Yao, 2004. "Regularized Equilibrium Problems with Application to Noncoercive Hemivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 571-596, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong-tong Shang & Guo-ji Tang, 2023. "Mixed polynomial variational inequalities," Journal of Global Optimization, Springer, vol. 86(4), pages 953-988, August.
    2. Ouayl Chadli & Joachim Gwinner & M. Zuhair Nashed, 2022. "Noncoercive Variational–Hemivariational Inequalities: Existence, Approximation by Double Regularization, and Application to Nonmonotone Contact Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 42-65, June.
    3. Alfredo Iusem & Felipe Lara, 2019. "Existence Results for Noncoercive Mixed Variational Inequalities in Finite Dimensional Spaces," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 122-138, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouayl Chadli & Joachim Gwinner & M. Zuhair Nashed, 2022. "Noncoercive Variational–Hemivariational Inequalities: Existence, Approximation by Double Regularization, and Application to Nonmonotone Contact Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 42-65, June.
    2. Adela Capătă, 2011. "Existence results for proper efficient solutions of vector equilibrium problems and applications," Journal of Global Optimization, Springer, vol. 51(4), pages 657-675, December.
    3. Jinjie Liu & Xinmin Yang & Shengda Zeng & Yong Zhao, 2022. "Coupled Variational Inequalities: Existence, Stability and Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 877-909, June.
    4. M. Bianchi & G. Kassay & R. Pini, 2022. "Brezis pseudomonotone bifunctions and quasi equilibrium problems via penalization," Journal of Global Optimization, Springer, vol. 82(3), pages 483-498, March.
    5. W. Ackooij & S. Demassey & P. Javal & H. Morais & W. Oliveira & B. Swaminathan, 2021. "A bundle method for nonsmooth DC programming with application to chance-constrained problems," Computational Optimization and Applications, Springer, vol. 78(2), pages 451-490, March.
    6. Jérôme Bolte & Edouard Pauwels, 2016. "Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 442-465, May.
    7. Uthai Kamraksa & Rabian Wangkeeree, 2011. "Generalized equilibrium problems and fixed point problems for nonexpansive semigroups in Hilbert spaces," Journal of Global Optimization, Springer, vol. 51(4), pages 689-714, December.
    8. Minh N. Dao & Joachim Gwinner & Dominikus Noll & Nina Ovcharova, 2016. "Nonconvex bundle method with application to a delamination problem," Computational Optimization and Applications, Springer, vol. 65(1), pages 173-203, September.
    9. Yao, Yonghong & Cho, Yeol Je & Liou, Yeong-Cheng, 2011. "Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems," European Journal of Operational Research, Elsevier, vol. 212(2), pages 242-250, July.
    10. Bijaya Kumar Sahu & Ouayl Chadli & Ram N. Mohapatra & Sabyasachi Pani, 2020. "Existence Results for Mixed Equilibrium Problems Involving Set-Valued Operators with Applications to Quasi-Hemivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 810-823, March.
    11. O. Chadli & Z. Liu & J. C. Yao, 2007. "Applications of Equilibrium Problems to a Class of Noncoercive Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 89-110, January.
    12. Ouayl Chadli & Qamrul Hasan Ansari & Jen-Chih Yao, 2016. "Mixed Equilibrium Problems and Anti-periodic Solutions for Nonlinear Evolution Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 410-440, February.
    13. A. Lahmdani & O. Chadli & J. C. Yao, 2014. "Existence of Solutions for Noncoercive Hemivariational Inequalities by an Equilibrium Approach Under Pseudomonotone Perturbation," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 49-66, January.
    14. Shengda Zeng & Dumitru Motreanu & Akhtar A. Khan, 2022. "Evolutionary Quasi-Variational-Hemivariational Inequalities I: Existence and Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 950-970, June.
    15. Silvia Bonettini & Peter Ochs & Marco Prato & Simone Rebegoldi, 2023. "An abstract convergence framework with application to inertial inexact forward–backward methods," Computational Optimization and Applications, Springer, vol. 84(2), pages 319-362, March.
    16. S. Bonettini & M. Prato & S. Rebegoldi, 2018. "A block coordinate variable metric linesearch based proximal gradient method," Computational Optimization and Applications, Springer, vol. 71(1), pages 5-52, September.
    17. Pierre Frankel & Guillaume Garrigos & Juan Peypouquet, 2015. "Splitting Methods with Variable Metric for Kurdyka–Łojasiewicz Functions and General Convergence Rates," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 874-900, June.
    18. Victor A. Kovtunenko & Karl Kunisch, 2022. "Shape Derivative for Penalty-Constrained Nonsmooth–Nonconvex Optimization: Cohesive Crack Problem," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 597-635, August.
    19. Zijia Peng & Karl Kunisch, 2018. "Optimal Control of Elliptic Variational–Hemivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 1-25, July.
    20. Alfredo Iusem & Felipe Lara, 2019. "Existence Results for Noncoercive Mixed Variational Inequalities in Finite Dimensional Spaces," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 122-138, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:171:y:2016:i:2:d:10.1007_s10957-016-0969-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.