Applications of Equilibrium Problems to a Class of Noncoercive Variational Inequalities
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-006-9072-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- O. Chaldi & Z. Chbani & H. Riahi, 2000. "Equilibrium Problems with Generalized Monotone Bifunctions and Applications to Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 105(2), pages 299-323, May.
- K. L. Lin & D. P. Yang & J. C. Yao, 1997. "Generalized Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 92(1), pages 117-125, January.
- O. Chadli & S. Schaible & J. C. Yao, 2004. "Regularized Equilibrium Problems with Application to Noncoercive Hemivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 571-596, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Adela Capătă, 2011. "Existence results for proper efficient solutions of vector equilibrium problems and applications," Journal of Global Optimization, Springer, vol. 51(4), pages 657-675, December.
- Nina Ovcharova & Joachim Gwinner, 2016. "Semicoercive Variational Inequalities: From Existence to Numerical Solution of Nonmonotone Contact Problems," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 422-439, November.
- Ouayl Chadli & Joachim Gwinner & M. Zuhair Nashed, 2022. "Noncoercive Variational–Hemivariational Inequalities: Existence, Approximation by Double Regularization, and Application to Nonmonotone Contact Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 42-65, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- O. Chadli & S. Schaible & J. C. Yao, 2004. "Regularized Equilibrium Problems with Application to Noncoercive Hemivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 571-596, June.
- A. Lahmdani & O. Chadli & J. C. Yao, 2014. "Existence of Solutions for Noncoercive Hemivariational Inequalities by an Equilibrium Approach Under Pseudomonotone Perturbation," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 49-66, January.
- Y. Chiang & O. Chadli & J. Yao, 2004. "Generalized Vector Equilibrium Problems with Trifunctions," Journal of Global Optimization, Springer, vol. 30(2), pages 135-154, November.
- O. Chadli & N.C. Wong & J.C. Yao, 2003. "Equilibrium Problems with Applications to Eigenvalue Problems," Journal of Optimization Theory and Applications, Springer, vol. 117(2), pages 245-266, May.
- Ren-you Zhong & Zhen Dou & Jiang-hua Fan, 2015. "Degree Theory and Solution Existence of Set-Valued Vector Variational Inequalities in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 527-549, November.
- Q. H. Ansari & J> C> Yao, 2000. "On Nondifferentiable and Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 106(3), pages 475-488, September.
- M. Bianchi & G. Kassay & R. Pini, 2022. "Brezis pseudomonotone bifunctions and quasi equilibrium problems via penalization," Journal of Global Optimization, Springer, vol. 82(3), pages 483-498, March.
- Y. P. Fang & N. J. Huang, 2006. "Feasibility and Solvability for Vector Complementarity Problems1," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 373-390, June.
- G. Y. Chen & X. Q. Yang, 2002. "Characterizations of Variable Domination Structures via Nonlinear Scalarization," Journal of Optimization Theory and Applications, Springer, vol. 112(1), pages 97-110, January.
- Ouayl Chadli & Joachim Gwinner & M. Zuhair Nashed, 2022. "Noncoercive Variational–Hemivariational Inequalities: Existence, Approximation by Double Regularization, and Application to Nonmonotone Contact Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 42-65, June.
- Mircea Balaj, 2021. "Intersection theorems for generalized weak KKM set‐valued mappings with applications in optimization," Mathematische Nachrichten, Wiley Blackwell, vol. 294(7), pages 1262-1276, July.
- S.J. Li & G.Y. Chen & K.L. Teo, 2002. "On the Stability of Generalized Vector Quasivariational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 113(2), pages 283-295, May.
- Uthai Kamraksa & Rabian Wangkeeree, 2011. "Generalized equilibrium problems and fixed point problems for nonexpansive semigroups in Hilbert spaces," Journal of Global Optimization, Springer, vol. 51(4), pages 689-714, December.
- X. H. Gong, 2008. "Continuity of the Solution Set to Parametric Weak Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 35-46, October.
- J. Li & G. Mastroeni, 2010. "Vector Variational Inequalities Involving Set-valued Mappings via Scalarization with Applications to Error Bounds for Gap Functions," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 355-372, May.
- John Cotrina & Anton Svensson, 2021. "The finite intersection property for equilibrium problems," Journal of Global Optimization, Springer, vol. 79(4), pages 941-957, April.
- Ouayl Chadli & Qamrul Hasan Ansari & Suliman Al-Homidan, 2017. "Existence of Solutions and Algorithms for Bilevel Vector Equilibrium Problems: An Auxiliary Principle Technique," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 726-758, March.
- Jiawei Chen & Shengjie Li & Zhongping Wan & Jen-Chih Yao, 2015. "Vector Variational-Like Inequalities with Constraints: Separation and Alternative," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 460-479, August.
- X. H. Gong, 2001. "Efficiency and Henig Efficiency for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 108(1), pages 139-154, January.
- Yao, Yonghong & Cho, Yeol Je & Liou, Yeong-Cheng, 2011. "Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems," European Journal of Operational Research, Elsevier, vol. 212(2), pages 242-250, July.
More about this item
Keywords
Degree theory; equilibrium problems; noncoercive variational inequalities; recession analysis; existence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:132:y:2007:i:1:d:10.1007_s10957-006-9072-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.