IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v168y2016i2d10.1007_s10957-015-0707-y.html
   My bibliography  Save this article

Mixed Equilibrium Problems and Anti-periodic Solutions for Nonlinear Evolution Equations

Author

Listed:
  • Ouayl Chadli

    (Ibn Zohr University)

  • Qamrul Hasan Ansari

    (Aligarh Muslim University
    King Fahd University of Petroleum and Minerals)

  • Jen-Chih Yao

    (China Medical University
    King Abdulaziz University)

Abstract

By using some new developments in the theory of equilibrium problems, we study the existence of anti-periodic solutions for nonlinear evolution equations associated with time-dependent pseudomonotone and quasimonotone operators in the topological sense. More precisely, we establish new existence results for mixed equilibrium problems associated with pseudomonotone and quasimonotone bifunctions in the topological sense. The results obtained are therefore applied to study the existence of anti-periodic solutions for nonlinear evolution equations in the setting of reflexive Banach spaces. This new approach leads us to improve and unify most of the recent results obtained in this direction.

Suggested Citation

  • Ouayl Chadli & Qamrul Hasan Ansari & Jen-Chih Yao, 2016. "Mixed Equilibrium Problems and Anti-periodic Solutions for Nonlinear Evolution Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 410-440, February.
  • Handle: RePEc:spr:joptap:v:168:y:2016:i:2:d:10.1007_s10957-015-0707-y
    DOI: 10.1007/s10957-015-0707-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0707-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0707-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. Chadli & N.C. Wong & J.C. Yao, 2003. "Equilibrium Problems with Applications to Eigenvalue Problems," Journal of Optimization Theory and Applications, Springer, vol. 117(2), pages 245-266, May.
    2. O. Chadli & S. Schaible & J. C. Yao, 2004. "Regularized Equilibrium Problems with Application to Noncoercive Hemivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 571-596, June.
    3. M. Bianchi & R. Pini, 2005. "Coercivity Conditions for Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 124(1), pages 79-92, January.
    4. Bigi, Giancarlo & Castellani, Marco & Pappalardo, Massimo & Passacantando, Mauro, 2013. "Existence and solution methods for equilibria," European Journal of Operational Research, Elsevier, vol. 227(1), pages 1-11.
    5. N. Hadjisavvas & S. Schaible, 1998. "From Scalar to Vector Equilibrium Problems in the Quasimonotone Case," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 297-309, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouayl Chadli & Joachim Gwinner & M. Zuhair Nashed, 2022. "Noncoercive Variational–Hemivariational Inequalities: Existence, Approximation by Double Regularization, and Application to Nonmonotone Contact Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 42-65, June.
    2. Bijaya Kumar Sahu & Ouayl Chadli & Ram N. Mohapatra & Sabyasachi Pani, 2020. "Existence Results for Mixed Equilibrium Problems Involving Set-Valued Operators with Applications to Quasi-Hemivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 810-823, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Bianchi & G. Kassay & R. Pini, 2022. "Brezis pseudomonotone bifunctions and quasi equilibrium problems via penalization," Journal of Global Optimization, Springer, vol. 82(3), pages 483-498, March.
    2. Gábor Kassay & Mihaela Miholca, 2015. "Existence results for vector equilibrium problems given by a sum of two functions," Journal of Global Optimization, Springer, vol. 63(1), pages 195-211, September.
    3. Mostafa Nasri & Luiz Carlos Matioli & Euda Mara Silva Ferreira & Adilson Silveira, 2016. "Implementation of Augmented Lagrangian Methods for Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 971-991, March.
    4. Adela Capătă, 2011. "Existence results for proper efficient solutions of vector equilibrium problems and applications," Journal of Global Optimization, Springer, vol. 51(4), pages 657-675, December.
    5. Somaye Jafari & Ali Farajzadeh & Sirous Moradi, 2016. "Locally Densely Defined Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 804-817, September.
    6. N. J. Huang & J. Li & J. C. Yao, 2007. "Gap Functions and Existence of Solutions for a System of Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 201-212, May.
    7. Mircea Balaj & Dan Florin Serac, 2023. "Generalized Equilibrium Problems," Mathematics, MDPI, vol. 11(9), pages 1-11, May.
    8. Y. D. Xu & S. J. Li, 2013. "Optimality Conditions for Generalized Ky Fan Quasi-Inequalities with Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 663-684, June.
    9. Bijaya Kumar Sahu & Ouayl Chadli & Ram N. Mohapatra & Sabyasachi Pani, 2020. "Existence Results for Mixed Equilibrium Problems Involving Set-Valued Operators with Applications to Quasi-Hemivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 810-823, March.
    10. Mircea Balaj, 2022. "Scalar and vector equilibrium problems with pairs of bifunctions," Journal of Global Optimization, Springer, vol. 84(3), pages 739-753, November.
    11. A. Lahmdani & O. Chadli & J. C. Yao, 2014. "Existence of Solutions for Noncoercive Hemivariational Inequalities by an Equilibrium Approach Under Pseudomonotone Perturbation," Journal of Optimization Theory and Applications, Springer, vol. 160(1), pages 49-66, January.
    12. Truong Duong & Nguyen Tan, 2012. "On the existence of solutions to generalized quasi-equilibrium problems," Journal of Global Optimization, Springer, vol. 52(4), pages 711-728, April.
    13. Yonghong Yao & Yeong-Cheng Liou & Ngai-Ching Wong, 2013. "Superimposed optimization methods for the mixed equilibrium problem and variational inclusion," Journal of Global Optimization, Springer, vol. 57(3), pages 935-950, November.
    14. Giancarlo Bigi & Massimo Pappalardo & Mauro Passacantando, 2016. "Optimization Tools for Solving Equilibrium Problems with Nonsmooth Data," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 887-905, December.
    15. Didier Aussel & Parin Chaipunya, 2024. "Variational and Quasi-Variational Inequalities Under Local Reproducibility: Solution Concept and Applications," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1531-1563, November.
    16. Toyasaki, Fuminori & Daniele, Patrizia & Wakolbinger, Tina, 2014. "A variational inequality formulation of equilibrium models for end-of-life products with nonlinear constraints," European Journal of Operational Research, Elsevier, vol. 236(1), pages 340-350.
    17. Q. H. Ansari & I. V. Konnov & J. C. Yao, 2001. "Existence of a Solution and Variational Principles for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 481-492, September.
    18. Thidaporn Seangwattana & Somyot Plubtieng & Kanokwan Sitthithakerngkiet, 2021. "A new linesearch iterative scheme for finding a common solution of split equilibrium and fixed point problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(2), pages 614-628, June.
    19. A. P. Farajzadeh & M. A. Noor, 2010. "On Dual Invex Ky Fan Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 407-413, May.
    20. Pineda, Salvador & Boomsma, Trine K. & Wogrin, Sonja, 2018. "Renewable generation expansion under different support schemes: A stochastic equilibrium approach," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1086-1099.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:168:y:2016:i:2:d:10.1007_s10957-015-0707-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.