IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v166y2015i2d10.1007_s10957-015-0739-3.html
   My bibliography  Save this article

General Split Equality Equilibrium Problems with Application to Split Optimization Problems

Author

Listed:
  • Shih-sen Chang

    (Yunnan University of Finance and Economics)

  • Lin Wang

    (Yunnan University of Finance and Economics)

  • Xiong Rui Wang

    (Yibin University)

  • Gang Wang

    (Yunnan University of Finance and Economics)

Abstract

The purpose of this paper is to introduce and study the general split equality equilibrium problem and the general split equilibrium problem in Hilbert spaces. In order to solve these problems, a new simultaneous iterative algorithm is proposed and several strong convergence theorems for the sequences generated by the algorithm are proved. As applications, we utilize our results to study the general split equality optimization problem and the general split optimization problem. The results presented in the paper extend and improve some recent results.

Suggested Citation

  • Shih-sen Chang & Lin Wang & Xiong Rui Wang & Gang Wang, 2015. "General Split Equality Equilibrium Problems with Application to Split Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 377-390, August.
  • Handle: RePEc:spr:joptap:v:166:y:2015:i:2:d:10.1007_s10957-015-0739-3
    DOI: 10.1007/s10957-015-0739-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0739-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0739-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Moudafi, 2011. "Split Monotone Variational Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 275-283, August.
    2. Abdellatif Moudafi, 2013. "Alternating CQ-Algorithms For Convex Feasibility And Split Fixed-Point Problems," Documents de Travail 2013-02, CEREGMIA, Université des Antilles et de la Guyane.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawicha Phairatchatniyom & Poom Kumam & Yeol Je Cho & Wachirapong Jirakitpuwapat & Kanokwan Sitthithakerngkiet, 2019. "The Modified Inertial Iterative Algorithm for Solving Split Variational Inclusion Problem for Multi-Valued Quasi Nonexpansive Mappings with Some Applications," Mathematics, MDPI, vol. 7(6), pages 1-22, June.
    2. Suthep Suantai & Suparat Kesornprom & Prasit Cholamjiak, 2019. "Modified Proximal Algorithms for Finding Solutions of the Split Variational Inclusions," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    3. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    4. Sitthithakerngkiet, Kanokwan & Deepho, Jitsupa & Kumam, Poom, 2015. "A hybrid viscosity algorithm via modify the hybrid steepest descent method for solving the split variational inclusion in image reconstruction and fixed point problems," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 986-1001.
    5. Thidaporn Seangwattana & Somyot Plubtieng & Kanokwan Sitthithakerngkiet, 2021. "A new linesearch iterative scheme for finding a common solution of split equilibrium and fixed point problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(2), pages 614-628, June.
    6. Bunyawee Chaloemyotphong & Atid Kangtunyakarn, 2019. "Modified Halpern Iterative Method for Solving Hierarchical Problem and Split Combination of Variational Inclusion Problem in Hilbert Space," Mathematics, MDPI, vol. 7(11), pages 1-26, November.
    7. Liya Liu & Xiaolong Qin & Jen-Chih Yao, 2020. "A Hybrid Forward–Backward Algorithm and Its Optimization Application," Mathematics, MDPI, vol. 8(3), pages 1-16, March.
    8. Pingjing Xia & Gang Cai & Qiao-Li Dong, 2023. "A Strongly Convergent Viscosity-Type Inertial Algorithm with Self Adaptive Stepsize for Solving Split Variational Inclusion Problems in Hilbert Spaces," Networks and Spatial Economics, Springer, vol. 23(4), pages 931-952, December.
    9. repec:wsi:jeapmx:v:20:y:2018:i:04:n:s0219198918500056 is not listed on IDEAS
    10. Che, Haitao & Li, Meixia, 2016. "The conjugate gradient method for split variational inclusion and constrained convex minimization problems," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 426-438.
    11. Shih-sen Chang & Jen-Chih Yao & Ching-Feng Wen & Liang-cai Zhao, 2020. "On the Split Equality Fixed Point Problem of Quasi-Pseudo-Contractive Mappings Without A Priori Knowledge of Operator Norms with Applications," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 343-360, May.
    12. Kumar, Ajay & Thakur, Balwant Singh & Postolache, Mihai, 2024. "Dynamic stepsize iteration process for solving split common fixed point problems with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 498-511.
    13. Shipra Singh & Savin Treanţă, 2021. "Characterization results of weak sharp solutions for split variational inequalities with application to traffic analysis," Annals of Operations Research, Springer, vol. 302(1), pages 265-287, July.
    14. Abdellatif Moudafi, 2014. "Computing the resolvent of composite operators," Documents de Travail 2014-02, CEREGMIA, Université des Antilles et de la Guyane.
    15. Le Hai Yen & Le Dung Muu & Nguyen Thi Thanh Huyen, 2016. "An algorithm for a class of split feasibility problems: application to a model in electricity production," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(3), pages 549-565, December.
    16. Yan Tang & Yeol Je Cho, 2019. "Convergence Theorems for Common Solutions of Split Variational Inclusion and Systems of Equilibrium Problems," Mathematics, MDPI, vol. 7(3), pages 1-25, March.
    17. Le Hai Yen & Nguyen Thi Thanh Huyen & Le Dung Muu, 2019. "A subgradient algorithm for a class of nonlinear split feasibility problems: application to jointly constrained Nash equilibrium models," Journal of Global Optimization, Springer, vol. 73(4), pages 849-868, April.
    18. Mujahid Abbas & Yusuf Ibrahim & Abdul Rahim Khan & Manuel De la Sen, 2019. "Split Variational Inclusion Problem and Fixed Point Problem for a Class of Multivalued Mappings in CAT (0) Spaces," Mathematics, MDPI, vol. 7(8), pages 1-14, August.
    19. Andreea Bejenaru & Mihai Postolache, 2022. "New Approach to Split Variational Inclusion Issues through a Three-Step Iterative Process," Mathematics, MDPI, vol. 10(19), pages 1-16, October.
    20. Preeyanuch Chuasuk & Anchalee Kaewcharoen, 2021. "Inertial Krasnoselski–Mann Iterative Method for Solving Hierarchical Fixed Point and Split Monotone Variational Inclusion Problems with Its Applications," Mathematics, MDPI, vol. 9(19), pages 1-24, October.
    21. Lai-Jiu Lin, 2019. "Optimization for the Sum of Finite Functions Over the Solution Set of Split Equality Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 180(2), pages 451-479, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:166:y:2015:i:2:d:10.1007_s10957-015-0739-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.