IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i11p1037-d283099.html
   My bibliography  Save this article

Modified Halpern Iterative Method for Solving Hierarchical Problem and Split Combination of Variational Inclusion Problem in Hilbert Space

Author

Listed:
  • Bunyawee Chaloemyotphong

    (Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

  • Atid Kangtunyakarn

    (Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

Abstract

The purpose of this paper is to introduce the split combination of variational inclusion problem which combines the concept of the modified variational inclusion problem introduced by Khuangsatung and Kangtunyakarn and the split variational inclusion problem introduced by Moudafi. Using a modified Halpern iterative method, we prove the strong convergence theorem for finding a common solution for the hierarchical fixed point problem and the split combination of variational inclusion problem. The result presented in this paper demonstrates the corresponding result for the split zero point problem and the split combination of variation inequality problem. Moreover, we discuss a numerical example for supporting our result and the numerical example shows that our result is not true if some conditions fail.

Suggested Citation

  • Bunyawee Chaloemyotphong & Atid Kangtunyakarn, 2019. "Modified Halpern Iterative Method for Solving Hierarchical Problem and Split Combination of Variational Inclusion Problem in Hilbert Space," Mathematics, MDPI, vol. 7(11), pages 1-26, November.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1037-:d:283099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/11/1037/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/11/1037/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Moudafi, 2011. "Split Monotone Variational Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 275-283, August.
    2. N. Nadezhkina & W. Takahashi, 2006. "Weak Convergence Theorem by an Extragradient Method for Nonexpansive Mappings and Monotone Mappings," Journal of Optimization Theory and Applications, Springer, vol. 128(1), pages 191-201, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yonghong Yao & Yeong-Cheng Liou & Ngai-Ching Wong, 2013. "Superimposed optimization methods for the mixed equilibrium problem and variational inclusion," Journal of Global Optimization, Springer, vol. 57(3), pages 935-950, November.
    2. Pawicha Phairatchatniyom & Poom Kumam & Yeol Je Cho & Wachirapong Jirakitpuwapat & Kanokwan Sitthithakerngkiet, 2019. "The Modified Inertial Iterative Algorithm for Solving Split Variational Inclusion Problem for Multi-Valued Quasi Nonexpansive Mappings with Some Applications," Mathematics, MDPI, vol. 7(6), pages 1-22, June.
    3. Suthep Suantai & Suparat Kesornprom & Prasit Cholamjiak, 2019. "Modified Proximal Algorithms for Finding Solutions of the Split Variational Inclusions," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    4. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    5. Sitthithakerngkiet, Kanokwan & Deepho, Jitsupa & Kumam, Poom, 2015. "A hybrid viscosity algorithm via modify the hybrid steepest descent method for solving the split variational inclusion in image reconstruction and fixed point problems," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 986-1001.
    6. Thidaporn Seangwattana & Somyot Plubtieng & Kanokwan Sitthithakerngkiet, 2021. "A new linesearch iterative scheme for finding a common solution of split equilibrium and fixed point problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(2), pages 614-628, June.
    7. S. Plubtieng & T. Thammathiwat, 2010. "A viscosity approximation method for equilibrium problems, fixed point problems of nonexpansive mappings and a general system of variational inequalities," Journal of Global Optimization, Springer, vol. 46(3), pages 447-464, March.
    8. Liya Liu & Xiaolong Qin & Jen-Chih Yao, 2020. "A Hybrid Forward–Backward Algorithm and Its Optimization Application," Mathematics, MDPI, vol. 8(3), pages 1-16, March.
    9. Z. Y. Huang & M. A. Noor & E. Al-Said, 2010. "On an Open Question of Takahashi for Nonexpansive Mappings and Inverse Strongly Monotone Mappings," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 194-204, October.
    10. Atid Kangtunyakarn, 2013. "A new iterative scheme for fixed point problems of infinite family of κ i -pseudo contractive mappings, equilibrium problem, variational inequality problems," Journal of Global Optimization, Springer, vol. 56(4), pages 1543-1562, August.
    11. Pingjing Xia & Gang Cai & Qiao-Li Dong, 2023. "A Strongly Convergent Viscosity-Type Inertial Algorithm with Self Adaptive Stepsize for Solving Split Variational Inclusion Problems in Hilbert Spaces," Networks and Spatial Economics, Springer, vol. 23(4), pages 931-952, December.
    12. Y. Censor & A. Gibali & S. Reich, 2011. "The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 318-335, February.
    13. repec:wsi:jeapmx:v:20:y:2018:i:04:n:s0219198918500056 is not listed on IDEAS
    14. Che, Haitao & Li, Meixia, 2016. "The conjugate gradient method for split variational inclusion and constrained convex minimization problems," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 426-438.
    15. Lateef Olakunle Jolaoso & Maggie Aphane, 2020. "A Generalized Viscosity Inertial Projection and Contraction Method for Pseudomonotone Variational Inequality and Fixed Point Problems," Mathematics, MDPI, vol. 8(11), pages 1-29, November.
    16. Shih-sen Chang & Jen-Chih Yao & Ching-Feng Wen & Liang-cai Zhao, 2020. "On the Split Equality Fixed Point Problem of Quasi-Pseudo-Contractive Mappings Without A Priori Knowledge of Operator Norms with Applications," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 343-360, May.
    17. Kumar, Ajay & Thakur, Balwant Singh & Postolache, Mihai, 2024. "Dynamic stepsize iteration process for solving split common fixed point problems with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 498-511.
    18. Shih-sen Chang & Lin Wang & Xiong Rui Wang & Gang Wang, 2015. "General Split Equality Equilibrium Problems with Application to Split Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 377-390, August.
    19. Shipra Singh & Savin Treanţă, 2021. "Characterization results of weak sharp solutions for split variational inequalities with application to traffic analysis," Annals of Operations Research, Springer, vol. 302(1), pages 265-287, July.
    20. Lu-Chuan Ceng & Chang-yu Wang & Jen-Chih Yao, 2008. "Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(3), pages 375-390, June.
    21. Abdellatif Moudafi, 2014. "Computing the resolvent of composite operators," Documents de Travail 2014-02, CEREGMIA, Université des Antilles et de la Guyane.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1037-:d:283099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.