IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i16p1884-d610472.html
   My bibliography  Save this article

Inertial Extragradient Methods for Solving Split Equilibrium Problems

Author

Listed:
  • Suthep Suantai

    (Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
    Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Narin Petrot

    (Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
    Centre of Excellence in Nonlinear Analysis and Optimization, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand)

  • Manatchanok Khonchaliew

    (Department of Mathematics, Faculty of Science, Lampang Rajabhat University, Lampang 52100, Thailand)

Abstract

This paper presents two inertial extragradient algorithms for finding a solution of split pseudomonotone equilibrium problems in the setting of real Hilbert spaces. The weak and strong convergence theorems of the introduced algorithms are presented under some constraint qualifications of the scalar sequences. The discussions on the numerical experiments are also provided to demonstrate the effectiveness of the proposed algorithms.

Suggested Citation

  • Suthep Suantai & Narin Petrot & Manatchanok Khonchaliew, 2021. "Inertial Extragradient Methods for Solving Split Equilibrium Problems," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1884-:d:610472
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/16/1884/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/16/1884/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dang Hieu, 2018. "An inertial-like proximal algorithm for equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(3), pages 399-415, December.
    2. P. Anh & H. Le Thi, 2013. "An Armijo-type method for pseudomonotone equilibrium problems and its applications," Journal of Global Optimization, Springer, vol. 57(3), pages 803-820, November.
    3. A. Moudafi, 2011. "Split Monotone Variational Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 275-283, August.
    4. Tran Quoc & Pham Anh & Le Muu, 2012. "Dual extragradient algorithms extended to equilibrium problems," Journal of Global Optimization, Springer, vol. 52(1), pages 139-159, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yekini Shehu & Olaniyi S. Iyiola & Duong Viet Thong & Nguyen Thi Cam Van, 2021. "An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 213-242, April.
    2. Jean Strodiot & Phan Vuong & Thi Nguyen, 2016. "A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces," Journal of Global Optimization, Springer, vol. 64(1), pages 159-178, January.
    3. Dang Hieu, 2017. "New subgradient extragradient methods for common solutions to equilibrium problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 571-594, July.
    4. Pawicha Phairatchatniyom & Poom Kumam & Yeol Je Cho & Wachirapong Jirakitpuwapat & Kanokwan Sitthithakerngkiet, 2019. "The Modified Inertial Iterative Algorithm for Solving Split Variational Inclusion Problem for Multi-Valued Quasi Nonexpansive Mappings with Some Applications," Mathematics, MDPI, vol. 7(6), pages 1-22, June.
    5. Suthep Suantai & Suparat Kesornprom & Prasit Cholamjiak, 2019. "Modified Proximal Algorithms for Finding Solutions of the Split Variational Inclusions," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    6. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    7. Sitthithakerngkiet, Kanokwan & Deepho, Jitsupa & Kumam, Poom, 2015. "A hybrid viscosity algorithm via modify the hybrid steepest descent method for solving the split variational inclusion in image reconstruction and fixed point problems," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 986-1001.
    8. Thidaporn Seangwattana & Somyot Plubtieng & Kanokwan Sitthithakerngkiet, 2021. "A new linesearch iterative scheme for finding a common solution of split equilibrium and fixed point problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(2), pages 614-628, June.
    9. Bunyawee Chaloemyotphong & Atid Kangtunyakarn, 2019. "Modified Halpern Iterative Method for Solving Hierarchical Problem and Split Combination of Variational Inclusion Problem in Hilbert Space," Mathematics, MDPI, vol. 7(11), pages 1-26, November.
    10. Cholamjiak, Watcharaporn & Dutta, Hemen & Yambangwai, Damrongsak, 2021. "Image restorations using an inertial parallel hybrid algorithm with Armijo linesearch for nonmonotone equilibrium problems," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    11. Yekini Shehu & Lulu Liu & Qiao-Li Dong & Jen-Chih Yao, 2022. "A Relaxed Forward-Backward-Forward Algorithm with Alternated Inertial Step: Weak and Linear Convergence," Networks and Spatial Economics, Springer, vol. 22(4), pages 959-990, December.
    12. Liya Liu & Xiaolong Qin & Jen-Chih Yao, 2020. "A Hybrid Forward–Backward Algorithm and Its Optimization Application," Mathematics, MDPI, vol. 8(3), pages 1-16, March.
    13. Habib ur Rehman & Wiyada Kumam & Kamonrat Sombut, 2022. "Inertial Modification Using Self-Adaptive Subgradient Extragradient Techniques for Equilibrium Programming Applied to Variational Inequalities and Fixed-Point Problems," Mathematics, MDPI, vol. 10(10), pages 1-29, May.
    14. Gaobo Li & Yanxia Lu & Yeol Je Cho, 2019. "Viscosity extragradient method with Armijo linesearch rule for pseudomonotone equilibrium problem and fixed point problem in Hilbert spaces," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(4), pages 903-921, December.
    15. Pingjing Xia & Gang Cai & Qiao-Li Dong, 2023. "A Strongly Convergent Viscosity-Type Inertial Algorithm with Self Adaptive Stepsize for Solving Split Variational Inclusion Problems in Hilbert Spaces," Networks and Spatial Economics, Springer, vol. 23(4), pages 931-952, December.
    16. P. Anh & T. Hai & P. Tuan, 2016. "On ergodic algorithms for equilibrium problems," Journal of Global Optimization, Springer, vol. 64(1), pages 179-195, January.
    17. Dawan Chumpungam & Panitarn Sarnmeta & Suthep Suantai, 2021. "A New Forward–Backward Algorithm with Line Searchand Inertial Techniques for Convex Minimization Problems with Applications," Mathematics, MDPI, vol. 9(13), pages 1-20, July.
    18. Yekini Shehu & Lulu Liu & Xiaolong Qin & Qiao-Li Dong, 2022. "Reflected Iterative Method for Non-Monotone Equilibrium Problems with Applications to Nash-Cournot Equilibrium Models," Networks and Spatial Economics, Springer, vol. 22(1), pages 153-180, March.
    19. repec:wsi:jeapmx:v:20:y:2018:i:04:n:s0219198918500056 is not listed on IDEAS
    20. Che, Haitao & Li, Meixia, 2016. "The conjugate gradient method for split variational inclusion and constrained convex minimization problems," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 426-438.
    21. Shih-sen Chang & Jen-Chih Yao & Ching-Feng Wen & Liang-cai Zhao, 2020. "On the Split Equality Fixed Point Problem of Quasi-Pseudo-Contractive Mappings Without A Priori Knowledge of Operator Norms with Applications," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 343-360, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1884-:d:610472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.