IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v161y2014i3d10.1007_s10957-013-0396-3.html
   My bibliography  Save this article

A Framework for Globally Optimizing Mixed-Integer Signomial Programs

Author

Listed:
  • Ruth Misener

    (Princeton University
    Imperial College London)

  • Christodoulos A. Floudas

    (Princeton University)

Abstract

Mixed-integer signomial optimization problems have broad applicability in engineering. Extending the Global Mixed-Integer Quadratic Optimizer, GloMIQO (Misener, Floudas in J. Glob. Optim., 2012. doi: 10.1007/s10898-012-9874-7 ), this manuscript documents a computational framework for deterministically addressing mixed-integer signomial optimization problems to ε-global optimality. This framework generalizes the GloMIQO strategies of (1) reformulating user input, (2) detecting special mathematical structure, and (3) globally optimizing the mixed-integer nonconvex program. Novel contributions of this paper include: flattening an expression tree towards term-based data structures; introducing additional nonconvex terms to interlink expressions; integrating a dynamic implementation of the reformulation-linearization technique into the branch-and-cut tree; designing term-based underestimators that specialize relaxation strategies according to variable bounds in the current tree node. Computational results are presented along with comparison of the computational framework to several state-of-the-art solvers.

Suggested Citation

  • Ruth Misener & Christodoulos A. Floudas, 2014. "A Framework for Globally Optimizing Mixed-Integer Signomial Programs," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 905-932, June.
  • Handle: RePEc:spr:joptap:v:161:y:2014:i:3:d:10.1007_s10957-013-0396-3
    DOI: 10.1007/s10957-013-0396-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0396-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0396-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sonia Cafieri & Jon Lee & Leo Liberti, 2010. "On convex relaxations of quadrilinear terms," Journal of Global Optimization, Springer, vol. 47(4), pages 661-685, August.
    2. Wang Yanjun & Li Tao & Liang Zhian, 2009. "A general algorithm for solving Generalized Geometric Programming with nonpositive degree of difficulty," Computational Optimization and Applications, Springer, vol. 44(1), pages 139-158, October.
    3. Pietro Belotti & Sonia Cafieri & Jon Lee & Leo Liberti & Andrew J. Miller, 2013. "On the Composition of Convex Envelopes for Quadrilinear Terms," Springer Optimization and Its Applications, in: Altannar Chinchuluun & Panos M. Pardalos & Rentsen Enkhbat & E. N. Pistikopoulos (ed.), Optimization, Simulation, and Control, edition 127, pages 1-16, Springer.
    4. Josef Kallrath, 1999. "Mixed-Integer Nonlinear Programming Applications," Palgrave Macmillan Books, in: Tito A. Ciriani & Stefano Gliozzi & Ellis L. Johnson & Roberto Tadei (ed.), Operational Research in Industry, chapter 3, pages 42-76, Palgrave Macmillan.
    5. Niknam, Taher & Khodaei, Amin & Fallahi, Farhad, 2009. "A new decomposition approach for the thermal unit commitment problem," Applied Energy, Elsevier, vol. 86(9), pages 1667-1674, September.
    6. Hanif Sherali & Evrim Dalkiran & Leo Liberti, 2012. "Reduced RLT representations for nonconvex polynomial programming problems," Journal of Global Optimization, Springer, vol. 52(3), pages 447-469, March.
    7. C. E. Gounaris & C. A. Floudas, 2008. "Convexity of Products of Univariate Functions and Convexification Transformations for Geometric Programming," Journal of Optimization Theory and Applications, Springer, vol. 138(3), pages 407-427, September.
    8. Michael R. Bussieck & Arne Stolbjerg Drud & Alexander Meeraus, 2003. "MINLPLib—A Collection of Test Models for Mixed-Integer Nonlinear Programming," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 114-119, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesco Humpola & Felipe Serrano, 2017. "Sufficient pruning conditions for MINLP in gas network design," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 239-261, March.
    2. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    2. Ruth Misener & Christodoulos Floudas, 2014. "ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations," Journal of Global Optimization, Springer, vol. 59(2), pages 503-526, July.
    3. Martin Ballerstein & Dennis Michaels, 2014. "Extended formulations for convex envelopes," Journal of Global Optimization, Springer, vol. 60(2), pages 217-238, October.
    4. Harsha Nagarajan & Mowen Lu & Site Wang & Russell Bent & Kaarthik Sundar, 2019. "An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs," Journal of Global Optimization, Springer, vol. 74(4), pages 639-675, August.
    5. A. Tsoukalas & A. Mitsos, 2014. "Multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 59(2), pages 633-662, July.
    6. Brais González-Rodríguez & Joaquín Ossorio-Castillo & Julio González-Díaz & Ángel M. González-Rueda & David R. Penas & Diego Rodríguez-Martínez, 2023. "Computational advances in polynomial optimization: RAPOSa, a freely available global solver," Journal of Global Optimization, Springer, vol. 85(3), pages 541-568, March.
    7. Kai Zhou & Mustafa R. Kılınç & Xi Chen & Nikolaos V. Sahinidis, 2018. "An efficient strategy for the activation of MIP relaxations in a multicore global MINLP solver," Journal of Global Optimization, Springer, vol. 70(3), pages 497-516, March.
    8. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    9. Emily Speakman & Jon Lee, 2017. "Quantifying Double McCormick," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1230-1253, November.
    10. Alexander Franz & Julia Rieck & Jürgen Zimmermann, 2019. "Fix-and-optimize procedures for solving the long-term unit commitment problem with pumped storages," Annals of Operations Research, Springer, vol. 274(1), pages 241-265, March.
    11. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    12. Goudarzi, Arman & Swanson, Andrew G. & Van Coller, John & Siano, Pierluigi, 2017. "Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators," Applied Energy, Elsevier, vol. 189(C), pages 667-696.
    13. Stefansson, Hlynur & Sigmarsdottir, Sigrun & Jensson, Pall & Shah, Nilay, 2011. "Discrete and continuous time representations and mathematical models for large production scheduling problems: A case study from the pharmaceutical industry," European Journal of Operational Research, Elsevier, vol. 215(2), pages 383-392, December.
    14. Abdul Rauf & Mahmoud Kassas & Muhammad Khalid, 2022. "Data-Driven Optimal Battery Storage Sizing for Grid-Connected Hybrid Distributed Generations Considering Solar and Wind Uncertainty," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    15. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2014. "Short-term electricity planning with increase wind capacity," Energy, Elsevier, vol. 69(C), pages 12-22.
    16. Fallahi, Farhad & Nick, Mostafa & Riahy, Gholam H. & Hosseinian, Seyed Hossein & Doroudi, Aref, 2014. "The value of energy storage in optimal non-firm wind capacity connection to power systems," Renewable Energy, Elsevier, vol. 64(C), pages 34-42.
    17. Cafieri, Sonia & Omheni, Riadh, 2017. "Mixed-integer nonlinear programming for aircraft conflict avoidance by sequentially applying velocity and heading angle changes," European Journal of Operational Research, Elsevier, vol. 260(1), pages 283-290.
    18. Vasilios A. Tsalavoutis & Constantinos G. Vrionis & Athanasios I. Tolis, 2021. "Optimizing a unit commitment problem using an evolutionary algorithm and a plurality of priority lists," Operational Research, Springer, vol. 21(1), pages 1-54, March.
    19. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    20. Dimitroulas, Dionisios K. & Georgilakis, Pavlos S., 2011. "A new memetic algorithm approach for the price based unit commitment problem," Applied Energy, Elsevier, vol. 88(12), pages 4687-4699.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:161:y:2014:i:3:d:10.1007_s10957-013-0396-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.