IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v265y2015icp708-722.html
   My bibliography  Save this article

A class of one parameter conjugate gradient methods

Author

Listed:
  • Yao, Shengwei
  • Lu, Xiwen
  • Ning, Liangshuo
  • Li, Feifei

Abstract

This paper proposes a class of one parameter conjugate gradient methods, which can be regarded as some kinds of convex combinations of some modified form of PRP and HS methods. The scalar βk has the form of ϕkϕk−1μk. The convergence of the given methods is analyzed by some unified tools which show the global convergence of the proposed methods. Numerical experiments with the CUTE collections show that the proposed methods are promising.

Suggested Citation

  • Yao, Shengwei & Lu, Xiwen & Ning, Liangshuo & Li, Feifei, 2015. "A class of one parameter conjugate gradient methods," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 708-722.
  • Handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:708-722
    DOI: 10.1016/j.amc.2015.05.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315007468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.05.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avinoam Perry, 1978. "Technical Note—A Modified Conjugate Gradient Algorithm," Operations Research, INFORMS, vol. 26(6), pages 1073-1078, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinbao Jian & Lin Yang & Xianzhen Jiang & Pengjie Liu & Meixing Liu, 2020. "A Spectral Conjugate Gradient Method with Descent Property," Mathematics, MDPI, vol. 8(2), pages 1-13, February.
    2. Parvaneh Faramarzi & Keyvan Amini, 2019. "A Modified Spectral Conjugate Gradient Method with Global Convergence," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 667-690, August.
    3. Waziri, Mohammed Yusuf & Ahmed, Kabiru & Sabi’u, Jamilu, 2019. "A family of Hager–Zhang conjugate gradient methods for system of monotone nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 645-660.
    4. Kaori Sugiki & Yasushi Narushima & Hiroshi Yabe, 2012. "Globally Convergent Three-Term Conjugate Gradient Methods that Use Secant Conditions and Generate Descent Search Directions for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 733-757, June.
    5. Bassim A. Hassan & Issam A. R. Moghrabi & Thaair A. Ameen & Ranen M. Sulaiman & Ibrahim Mohammed Sulaiman, 2024. "Image Noise Reduction and Solution of Unconstrained Minimization Problems via New Conjugate Gradient Methods," Mathematics, MDPI, vol. 12(17), pages 1-12, September.
    6. Nataj, Sarah & Lui, S.H., 2020. "Superlinear convergence of nonlinear conjugate gradient method and scaled memoryless BFGS method based on assumptions about the initial point," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    7. Neculai Andrei, 2013. "Another Conjugate Gradient Algorithm with Guaranteed Descent and Conjugacy Conditions for Large-scale Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 159-182, October.
    8. Qing-Rui He & Chun-Rong Chen & Sheng-Jie Li, 2023. "Spectral conjugate gradient methods for vector optimization problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 457-489, November.
    9. Dai, Zhifeng & Chen, Xiaohong & Wen, Fenghua, 2015. "A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 378-386.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:708-722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.