IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v107y2000i1d10.1023_a1004604732705.html
   My bibliography  Save this article

On Convergence of the Simplicial Branch-and-Bound Algorithm Based on ω-Subdivisions

Author

Listed:
  • M. Locatelli

    (Universitá di Torino)

  • U. Raber

    (University of Trier)

Abstract

The problem of minimizing a concave function over a polytope is considered. The simplicial branch-and-bound approach is presented and theoretical studies about the convergence of these algorithms are carried on. In particular, the convergence of the algorithm based on so-called ω-subdivisions is proved, which had been an open question for a long time.

Suggested Citation

  • M. Locatelli & U. Raber, 2000. "On Convergence of the Simplicial Branch-and-Bound Algorithm Based on ω-Subdivisions," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 69-79, October.
  • Handle: RePEc:spr:joptap:v:107:y:2000:i:1:d:10.1023_a:1004604732705
    DOI: 10.1023/A:1004604732705
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1004604732705
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1004604732705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James E. Falk & Richard M. Soland, 1969. "An Algorithm for Separable Nonconvex Programming Problems," Management Science, INFORMS, vol. 15(9), pages 550-569, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takahito Kuno, 2018. "A modified simplicial algorithm for convex maximization based on an extension of $$\omega $$ ω -subdivision," Journal of Global Optimization, Springer, vol. 71(2), pages 297-311, June.
    2. M. Locatelli & U. Raber, 2000. "Finiteness Result for the Simplicial Branch-and-Bound Algorithm Based on ω-Subdivisions," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 81-88, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wooseung Jang & J. George Shanthikumar, 2002. "Stochastic allocation of inspection capacity to competitive processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(1), pages 78-94, February.
    2. Yong Xia & Longfei Wang & Meijia Yang, 2019. "A fast algorithm for globally solving Tikhonov regularized total least squares problem," Journal of Global Optimization, Springer, vol. 73(2), pages 311-330, February.
    3. Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
    4. Achim Wechsung & Spencer Schaber & Paul Barton, 2014. "The cluster problem revisited," Journal of Global Optimization, Springer, vol. 58(3), pages 429-438, March.
    5. Achim Wechsung & Paul Barton, 2014. "Global optimization of bounded factorable functions with discontinuities," Journal of Global Optimization, Springer, vol. 58(1), pages 1-30, January.
    6. Reiner Horst, 1990. "Deterministic methods in constrained global optimization: Some recent advances and new fields of application," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 433-471, August.
    7. Frank Karsten & Marco Slikker & Peter Borm, 2017. "Cost allocation rules for elastic single‐attribute situations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 271-286, June.
    8. T. Kuno, 1999. "Solving a Class of Multiplicative Programs with 0–1 Knapsack Constraints," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 121-135, October.
    9. Benson, Harold P., 2006. "Fractional programming with convex quadratic forms and functions," European Journal of Operational Research, Elsevier, vol. 173(2), pages 351-369, September.
    10. Jochen Gorski & Frank Pfeuffer & Kathrin Klamroth, 2007. "Biconvex sets and optimization with biconvex functions: a survey and extensions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 373-407, December.
    11. Harold P. Benson & S. Selcuk Erenguc, 1990. "An algorithm for concave integer minimization over a polyhedron," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 515-525, August.
    12. Paula Amaral & Luís Fernandes & Joaquim Júdice & Hanif Sherali, 2009. "On optimal zero-preserving corrections for inconsistent linear systems," Computational Optimization and Applications, Springer, vol. 45(4), pages 645-666, December.
    13. Massol, Olivier & Banal-Estañol, Albert, 2014. "Export diversification through resource-based industrialization: The case of natural gas," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1067-1082.
    14. Takahito Kuno, 2022. "A revision of the rectangular algorithm for a class of DC optimization problems," Journal of Global Optimization, Springer, vol. 83(2), pages 187-200, June.
    15. Achim Wechsung & Joseph Scott & Harry Watson & Paul Barton, 2015. "Reverse propagation of McCormick relaxations," Journal of Global Optimization, Springer, vol. 63(1), pages 1-36, September.
    16. Emmanuel Ogbe & Xiang Li, 2019. "A joint decomposition method for global optimization of multiscenario nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 75(3), pages 595-629, November.
    17. April K. Andreas & J. Cole Smith, 2008. "Mathematical Programming Algorithms for Two-Path Routing Problems with Reliability Considerations," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 553-564, November.
    18. Jens Deussen & Uwe Naumann, 2023. "Subdomain separability in global optimization," Journal of Global Optimization, Springer, vol. 86(3), pages 573-588, July.
    19. Pete Janes & Alistair Rendell, 2013. "Deterministic global optimization in ab-initio quantum chemistry," Journal of Global Optimization, Springer, vol. 56(2), pages 537-558, June.
    20. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2023. "A general purpose exact solution method for mixed integer concave minimization problems," European Journal of Operational Research, Elsevier, vol. 309(3), pages 977-992.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:107:y:2000:i:1:d:10.1023_a:1004604732705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.