IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v103y1999i1d10.1023_a1021725517203.html
   My bibliography  Save this article

Solving a Class of Multiplicative Programs with 0–1 Knapsack Constraints

Author

Listed:
  • T. Kuno

    (University of Tsukuba)

Abstract

We develop a branch-and-bound algorithm to solve a nonlinear class of 0–1 knapsack problems. The objective function is a product of m≥2 affine functions, whose variables are mutually exclusive. The branching procedure in the proposed algorithm is the usual one, but the bounding procedure exploits the special structure of the problem and is implemented through two stages: the first stage is based on linear programming relaxation; the second stage is based on Lagrangian relaxation. Computational results indicate that the algorithm is promising.

Suggested Citation

  • T. Kuno, 1999. "Solving a Class of Multiplicative Programs with 0–1 Knapsack Constraints," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 121-135, October.
  • Handle: RePEc:spr:joptap:v:103:y:1999:i:1:d:10.1023_a:1021725517203
    DOI: 10.1023/A:1021725517203
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021725517203
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021725517203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James E. Falk & Richard M. Soland, 1969. "An Algorithm for Separable Nonconvex Programming Problems," Management Science, INFORMS, vol. 15(9), pages 550-569, May.
    2. Arthur M. Geoffrion, 1967. "Solving Bicriterion Mathematical Programs," Operations Research, INFORMS, vol. 15(1), pages 39-54, February.
    3. H. P. Benson & G. M. Boger, 1997. "Multiplicative Programming Problems: Analysis and Efficient Point Search Heuristic," Journal of Optimization Theory and Applications, Springer, vol. 94(2), pages 487-510, August.
    4. Egon Balas & Eitan Zemel, 1980. "An Algorithm for Large Zero-One Knapsack Problems," Operations Research, INFORMS, vol. 28(5), pages 1130-1154, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lizhen Shao & Matthias Ehrgott, 2014. "An objective space cut and bound algorithm for convex multiplicative programmes," Journal of Global Optimization, Springer, vol. 58(4), pages 711-728, April.
    2. Esmaeil Afrashteh & Behrooz Alizadeh & Fahimeh Baroughi, 2020. "Optimal approaches for upgrading selective obnoxious p-median location problems on tree networks," Annals of Operations Research, Springer, vol. 289(2), pages 153-172, June.
    3. M. Drozdowski & N. V. Shakhlevich, 2021. "Scheduling divisible loads with time and cost constraints," Journal of Scheduling, Springer, vol. 24(5), pages 507-521, October.
    4. Wooseung Jang & J. George Shanthikumar, 2002. "Stochastic allocation of inspection capacity to competitive processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(1), pages 78-94, February.
    5. Yong Xia & Longfei Wang & Meijia Yang, 2019. "A fast algorithm for globally solving Tikhonov regularized total least squares problem," Journal of Global Optimization, Springer, vol. 73(2), pages 311-330, February.
    6. Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
    7. Xi, Haoning & Aussel, Didier & Liu, Wei & Waller, S.Travis. & Rey, David, 2024. "Single-leader multi-follower games for the regulation of two-sided mobility-as-a-service markets," European Journal of Operational Research, Elsevier, vol. 317(3), pages 718-736.
    8. Boddiford, Ashley N. & Kaufman, Daniel E. & Skipper, Daphne E. & Uhan, Nelson A., 2023. "Approximating a linear multiplicative objective in watershed management optimization," European Journal of Operational Research, Elsevier, vol. 305(2), pages 547-561.
    9. David Pisinger, 1999. "Core Problems in Knapsack Algorithms," Operations Research, INFORMS, vol. 47(4), pages 570-575, August.
    10. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
    11. H. P. Benson & G. M. Boger, 2000. "Outcome-Space Cutting-Plane Algorithm for Linear Multiplicative Programming," Journal of Optimization Theory and Applications, Springer, vol. 104(2), pages 301-322, February.
    12. Renata Mansini & M. Grazia Speranza, 2012. "CORAL: An Exact Algorithm for the Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 399-415, August.
    13. Cai, Zeen & Mo, Dong & Geng, Maosi & Tang, Wei & Chen, Xiqun Michael, 2023. "Integrating ride-sourcing with electric vehicle charging under mixed fleets and differentiated services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    14. Michael Holzhauser & Sven O. Krumke & Clemens Thielen, 2016. "Budget-constrained minimum cost flows," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1720-1745, May.
    15. Achim Wechsung & Spencer Schaber & Paul Barton, 2014. "The cluster problem revisited," Journal of Global Optimization, Springer, vol. 58(3), pages 429-438, March.
    16. Gao, YueLin & Zhang, Bo, 2023. "Output-space branch-and-bound reduction algorithm for generalized linear fractional-multiplicative programming problem," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    17. Altay, Nezih & Robinson Jr., Powell E. & Bretthauer, Kurt M., 2008. "Exact and heuristic solution approaches for the mixed integer setup knapsack problem," European Journal of Operational Research, Elsevier, vol. 190(3), pages 598-609, November.
    18. Jakob Puchinger & Günther R. Raidl & Ulrich Pferschy, 2010. "The Multidimensional Knapsack Problem: Structure and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 250-265, May.
    19. Achim Wechsung & Paul Barton, 2014. "Global optimization of bounded factorable functions with discontinuities," Journal of Global Optimization, Springer, vol. 58(1), pages 1-30, January.
    20. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:103:y:1999:i:1:d:10.1023_a:1021725517203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.