IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v102y1999i1d10.1023_a1021838311346.html
   My bibliography  Save this article

On the Monotonicity of the Compromise Set in Multicriteria Problems

Author

Listed:
  • F. Blasco

    (Universidad Politécnica de Madrid)

  • E. Cuchillo-Ibáñez

    (Universidad Politécnica de Madrid)

  • M. A. Morón

    (Universidad Politécnica de Madrid)

  • C. Romero

    (Universidad Politécnica de Madrid)

Abstract

This paper discusses the extension of results on monotonicity of the compromise set valid for bicriteria problems to general multicriteria problems under a very general condition, which is assumable in compromise programming problems coming from economics. Mainly, the problem that we treat is the following: find and describe the compromise set when the feasible set is a convex set in the positive cone, limited by a level hypersurface of a differentiable production–transformation function. This scenario is usual in many economic applications, chiefly in production analysis.

Suggested Citation

  • F. Blasco & E. Cuchillo-Ibáñez & M. A. Morón & C. Romero, 1999. "On the Monotonicity of the Compromise Set in Multicriteria Problems," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 69-82, July.
  • Handle: RePEc:spr:joptap:v:102:y:1999:i:1:d:10.1023_a:1021838311346
    DOI: 10.1023/A:1021838311346
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021838311346
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021838311346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. L. Yu, 1973. "A Class of Solutions for Group Decision Problems," Management Science, INFORMS, vol. 19(8), pages 936-946, April.
    2. M. Freimer & P. L. Yu, 1976. "Some New Results on Compromise Solutions for Group Decision Problems," Management Science, INFORMS, vol. 22(6), pages 688-693, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arenas Parra, M. & Bilbao Terol, A. & Perez Gladish, B. & Rodriguez Uria, M. V., 2005. "Solving a multiobjective possibilistic problem through compromise programming," European Journal of Operational Research, Elsevier, vol. 164(3), pages 748-759, August.
    2. Enrique Ballestero & David Pla-Santamaria, 2005. "Grading the performance of market indicators with utility benchmarks selected from Footsie: a 2000 case study," Applied Economics, Taylor & Francis Journals, vol. 37(18), pages 2147-2160.
    3. María Romero & María Luisa Cuadrado & Luis Romero & Carlos Romero, 2020. "Optimum acceptability of telecommunications networks: a multi-criteria approach," Operational Research, Springer, vol. 20(3), pages 1899-1911, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Büsing, Christina & Goetzmann, Kai-Simon & Matuschke, Jannik & Stiller, Sebastian, 2017. "Reference points and approximation algorithms in multicriteria discrete optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 829-840.
    2. Kuldeep Kavta & Arkopal K. Goswami, 2021. "A methodological framework for a priori selection of travel demand management package using fuzzy MCDM methods," Transportation, Springer, vol. 48(6), pages 3059-3084, December.
    3. M. Voorneveld & A. Nouweland & R. McLean, 2011. "Axiomatizations of the Euclidean compromise solution," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(3), pages 427-448, August.
    4. Chi-Yo Huang & Pei-Han Chung & Joseph Z. Shyu & Yao-Hua Ho & Chao-Hsin Wu & Ming-Che Lee & Ming-Jenn Wu, 2018. "Evaluation and Selection of Materials for Particulate Matter MEMS Sensors by Using Hybrid MCDM Methods," Sustainability, MDPI, vol. 10(10), pages 1-35, September.
    5. Claus-Jochen Haake & Cheng-Zhong Qin, 2018. "On unification of solutions to the bargaining problem," Working Papers CIE 113, Paderborn University, CIE Center for International Economics.
    6. Francisco J. André & Carlos Romero, 2006. "On the equivalence between compromise programming and the use of composite compromise metrics," Working Papers 06.33, Universidad Pablo de Olavide, Department of Economics.
    7. Ma, Qiuzhuo & Song, Haiqing & Zhu, Wenbin, 2018. "Low-carbon airline fleet assignment: A compromise approach," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 86-102.
    8. Carlos Alós-Ferrer & Jaume García-Segarra & Miguel Ginés-Vilar, 2018. "Anchoring on Utopia: a generalization of the Kalai–Smorodinsky solution," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 6(2), pages 141-155, October.
    9. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2007. "Extended VIKOR method in comparison with outranking methods," European Journal of Operational Research, Elsevier, vol. 178(2), pages 514-529, April.
    10. Sebastián Lozano & Narges Soltani & Akram Dehnokhalaji, 2020. "A compromise programming approach for target setting in DEA," Annals of Operations Research, Springer, vol. 288(1), pages 363-390, May.
    11. Casiano A. Manrique-de-Lara-Peñate & Dolores R. Santos-Peñate, 2017. "SAM updating using multi-objective optimization techniques," Papers in Regional Science, Wiley Blackwell, vol. 96(3), pages 647-667, August.
    12. de Sousa Xavier, António Manuel & Costa Freitas, Maria de Belém & de Sousa Fragoso, Rui Manuel, 2015. "Management of Mediterranean forests — A compromise programming approach considering different stakeholders and different objectives," Forest Policy and Economics, Elsevier, vol. 57(C), pages 38-46.
    13. An, Qingxian & Zhang, Qiaoyu & Tao, Xiangyang, 2023. "Pay-for-performance incentives in benchmarking with quasi S-shaped technology," Omega, Elsevier, vol. 118(C).
    14. Gwo-Hshiung Tzeng & Chi-Yo Huang, 2012. "Combined DEMATEL technique with hybrid MCDM methods for creating the aspired intelligent global manufacturing & logistics systems," Annals of Operations Research, Springer, vol. 197(1), pages 159-190, August.
    15. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    16. Omer F. Baris, 2018. "Timing effect in bargaining and ex ante efficiency of the relative utilitarian solution," Theory and Decision, Springer, vol. 84(4), pages 547-556, June.
    17. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    18. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
    19. Hisham Alidrisi, 2021. "An Innovative Job Evaluation Approach Using the VIKOR Algorithm," JRFM, MDPI, vol. 14(6), pages 1-19, June.
    20. Roberto Cervelló Royo & Fernando García García & Francisco Guijarro-Martínez & Ismael Moya-Clemente, 2011. "Housing Ranking: a model of equilibrium between buyers and sellers expectations," ERSA conference papers ersa11p314, European Regional Science Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:102:y:1999:i:1:d:10.1023_a:1021838311346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.