IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i1d10.1007_s10845-022-02037-5.html
   My bibliography  Save this article

Multi-agent reinforcement learning based on graph convolutional network for flexible job shop scheduling

Author

Listed:
  • Xuan Jing

    (South China University of Technology)

  • Xifan Yao

    (South China University of Technology)

  • Min Liu

    (Guangxi University of Science and Technology)

  • Jiajun Zhou

    (China University of Geosciences)

Abstract

With the development of Internet of manufacturing things, decentralized scheduling in flexible job shop is arousing great attention. To deal with the challenges confronted by personalized manufacturing, such as high level of flexibility, agility and robustness for dynamic response, we design a centralized-learning decentralized-execution (CLDE) multi-agent reinforcement learning scheduling structure based on Graph Convolutional Network (GCN), namely graph-based multi-agent system (GMAS), to solve the flexible job shop scheduling problem (FJSP). Firstly, according to the product processing network and job shop environment, the probabilistic model of directed acyclic graph for FJSP is constructed. It models the FJSP as the process of topology graph structure predicting, and the scheduling strategy is adjusted by predicting the connection probability among edges. Then, the multi-agent reinforcement learning system consisting of environment module, job agent module, and machine agent module is constructed. The job agents execute scheduling actions by interacting with environment and machine agents in a decentralized way. Meanwhile, the interaction between job agents is extracted as an abstract global action based on GCN. The experimental results demonstrate that GMAS outperforms its rivals on FJSP, especially in complicated situations. Our results thus shed light on a novel direction for FJSP in dynamic and complex scenarios.

Suggested Citation

  • Xuan Jing & Xifan Yao & Min Liu & Jiajun Zhou, 2024. "Multi-agent reinforcement learning based on graph convolutional network for flexible job shop scheduling," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 75-93, January.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:1:d:10.1007_s10845-022-02037-5
    DOI: 10.1007/s10845-022-02037-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-02037-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-02037-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei Xiong & Dongmei Fu, 2018. "A new immune multi-agent system for the flexible job shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 857-873, April.
    2. Abderraouf Maoudj & Brahim Bouzouia & Abdelfetah Hentout & Ahmed Kouider & Redouane Toumi, 2019. "Distributed multi-agent scheduling and control system for robotic flexible assembly cells," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1629-1644, April.
    3. Borenstein, Denis, 2000. "A directed acyclic graph representation of routing manufacturing flexibility," European Journal of Operational Research, Elsevier, vol. 127(1), pages 78-93, November.
    4. Li, Xinyu & Gao, Liang, 2016. "An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 174(C), pages 93-110.
    5. Sicheng Zhang & Tak Nam Wong, 2017. "Flexible job-shop scheduling/rescheduling in dynamic environment: a hybrid MAS/ACO approach," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3173-3196, June.
    6. Junyoung Park & Jaehyeong Chun & Sang Hun Kim & Youngkook Kim & Jinkyoo Park, 2021. "Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning," International Journal of Production Research, Taylor & Francis Journals, vol. 59(11), pages 3360-3377, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Didden, Jeroen B.H.C. & Dang, Quang-Vinh & Adan, Ivo J.B.F., 2024. "Enhancing stability and robustness in online machine shop scheduling: A multi-agent system and negotiation-based approach for handling machine downtime in industry 4.0," European Journal of Operational Research, Elsevier, vol. 316(2), pages 569-583.
    2. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    3. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    4. Olumide Emmanuel Oluyisola & Swapnil Bhalla & Fabio Sgarbossa & Jan Ola Strandhagen, 2022. "Designing and developing smart production planning and control systems in the industry 4.0 era: a methodology and case study," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 311-332, January.
    5. Dung-Ying Lin & Tzu-Yun Huang, 2021. "A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
    6. Lunardi, Willian T. & Birgin, Ernesto G. & Ronconi, Débora P. & Voos, Holger, 2021. "Metaheuristics for the online printing shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 293(2), pages 419-441.
    7. Zhengcai Cao & Lijie Zhou & Biao Hu & Chengran Lin, 2019. "An Adaptive Scheduling Algorithm for Dynamic Jobs for Dealing with the Flexible Job Shop Scheduling Problem," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 299-309, June.
    8. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R & M. Calle, 2020. "Scheduling a dual-resource flexible job shop with makespan and due date-related criteria," Annals of Operations Research, Springer, vol. 291(1), pages 5-35, August.
    9. Yingli Li & Jiahai Wang & Zhengwei Liu, 2022. "A simple two-agent system for multi-objective flexible job-shop scheduling," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 42-64, January.
    10. Xianbo Xiang & Caoyang Yu & He Xu & Stuart X. Zhu, 2018. "Optimization of Heterogeneous Container Loading Problem with Adaptive Genetic Algorithm," Complexity, Hindawi, vol. 2018, pages 1-12, November.
    11. Jie Fang & Yunqing Rao & Qiang Luo & Jiatai Xu, 2023. "Solving One-Dimensional Cutting Stock Problems with the Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    12. Lu Sun & Lin Lin & Haojie Li & Mitsuo Gen, 2019. "Cooperative Co-Evolution Algorithm with an MRF-Based Decomposition Strategy for Stochastic Flexible Job Shop Scheduling," Mathematics, MDPI, vol. 7(4), pages 1-20, March.
    13. Leilei Meng & Biao Zhang & Kaizhou Gao & Peng Duan, 2022. "An MILP Model for Energy-Conscious Flexible Job Shop Problem with Transportation and Sequence-Dependent Setup Times," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    14. Phong B. Dao, 2021. "Learning Feedforward Control Using Multiagent Control Approach for Motion Control Systems," Energies, MDPI, vol. 14(2), pages 1-17, January.
    15. An, Youjun & Chen, Xiaohui & Hu, Jiawen & Zhang, Lin & Li, Yinghe & Jiang, Junwei, 2022. "Joint optimization of preventive maintenance and production rescheduling with new machine insertion and processing speed selection," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    16. Ströhle, Philipp & Flath, Christoph M., 2016. "Local matching of flexible load in smart grids," European Journal of Operational Research, Elsevier, vol. 253(3), pages 811-824.
    17. Braune, Roland & Benda, Frank & Doerner, Karl F. & Hartl, Richard F., 2022. "A genetic programming learning approach to generate dispatching rules for flexible shop scheduling problems," International Journal of Production Economics, Elsevier, vol. 243(C).
    18. Mohamed Habib Zahmani & Baghdad Atmani, 2021. "Multiple dispatching rules allocation in real time using data mining, genetic algorithms, and simulation," Journal of Scheduling, Springer, vol. 24(2), pages 175-196, April.
    19. Zhe Zhang & Xiaoling Song & Huijun Huang & Yong Yin & Benjamin Lev, 2022. "Scheduling problem in seru production system considering DeJong’s learning effect and job splitting," Annals of Operations Research, Springer, vol. 312(2), pages 1119-1141, May.
    20. Teeradech Laisupannawong & Boonyarit Intiyot & Chawalit Jeenanunta, 2021. "Mixed-Integer Linear Programming Model and Heuristic for Short-Term Scheduling of Pressing Process in Multi-Layer Printed Circuit Board Manufacturing," Mathematics, MDPI, vol. 9(6), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:1:d:10.1007_s10845-022-02037-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.