Multi-agent reinforcement learning based on graph convolutional network for flexible job shop scheduling
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-022-02037-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Abderraouf Maoudj & Brahim Bouzouia & Abdelfetah Hentout & Ahmed Kouider & Redouane Toumi, 2019. "Distributed multi-agent scheduling and control system for robotic flexible assembly cells," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1629-1644, April.
- Wei Xiong & Dongmei Fu, 2018. "A new immune multi-agent system for the flexible job shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 857-873, April.
- Borenstein, Denis, 2000. "A directed acyclic graph representation of routing manufacturing flexibility," European Journal of Operational Research, Elsevier, vol. 127(1), pages 78-93, November.
- Li, Xinyu & Gao, Liang, 2016. "An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 174(C), pages 93-110.
- Sicheng Zhang & Tak Nam Wong, 2017. "Flexible job-shop scheduling/rescheduling in dynamic environment: a hybrid MAS/ACO approach," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3173-3196, June.
- Junyoung Park & Jaehyeong Chun & Sang Hun Kim & Youngkook Kim & Jinkyoo Park, 2021. "Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning," International Journal of Production Research, Taylor & Francis Journals, vol. 59(11), pages 3360-3377, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Didden, Jeroen B.H.C. & Dang, Quang-Vinh & Adan, Ivo J.B.F., 2024. "Enhancing stability and robustness in online machine shop scheduling: A multi-agent system and negotiation-based approach for handling machine downtime in industry 4.0," European Journal of Operational Research, Elsevier, vol. 316(2), pages 569-583.
- Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
- Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
- Olumide Emmanuel Oluyisola & Swapnil Bhalla & Fabio Sgarbossa & Jan Ola Strandhagen, 2022. "Designing and developing smart production planning and control systems in the industry 4.0 era: a methodology and case study," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 311-332, January.
- Dung-Ying Lin & Tzu-Yun Huang, 2021. "A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
- Zhengcai Cao & Lijie Zhou & Biao Hu & Chengran Lin, 2019. "An Adaptive Scheduling Algorithm for Dynamic Jobs for Dealing with the Flexible Job Shop Scheduling Problem," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 299-309, June.
- Yingli Li & Jiahai Wang & Zhengwei Liu, 2022. "A simple two-agent system for multi-objective flexible job-shop scheduling," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 42-64, January.
- Lu Sun & Lin Lin & Haojie Li & Mitsuo Gen, 2019. "Cooperative Co-Evolution Algorithm with an MRF-Based Decomposition Strategy for Stochastic Flexible Job Shop Scheduling," Mathematics, MDPI, vol. 7(4), pages 1-20, March.
- An, Youjun & Chen, Xiaohui & Hu, Jiawen & Zhang, Lin & Li, Yinghe & Jiang, Junwei, 2022. "Joint optimization of preventive maintenance and production rescheduling with new machine insertion and processing speed selection," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
- Mohamed Habib Zahmani & Baghdad Atmani, 2021. "Multiple dispatching rules allocation in real time using data mining, genetic algorithms, and simulation," Journal of Scheduling, Springer, vol. 24(2), pages 175-196, April.
- Xiaoqiu Shi & Wei Long & Yanyan Li & Dingshan Deng, 2020. "Multi-population genetic algorithm with ER network for solving flexible job shop scheduling problems," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-23, May.
- Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.
- Mohd. Shaaban Hussain & Mohammed Ali, 2019. "A Multi-agent Based Dynamic Scheduling of Flexible Manufacturing Systems," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 20(3), pages 267-290, September.
- Kandula, Shanthan & Krishnamoorthy, Srikumar & Roy, Debjit, 2021. "Learning to Play the Box-Sizing Game: A Machine Learning Approach for Solving the E-commerce Packaging Problem," IIMA Working Papers WP 2021-11-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
- Tsegay Tesfay Mezgebe & Hind Bril El Haouzi & Guillaume Demesure & Remi Pannequin & Andre Thomas, 2020. "Multi-agent systems negotiation to deal with dynamic scheduling in disturbed industrial context," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1367-1382, August.
- Anran Zhao & Peng Liu & Xiyu Gao & Guotai Huang & Xiuguang Yang & Yuan Ma & Zheyu Xie & Yunfeng Li, 2022. "Data-Mining-Based Real-Time Optimization of the Job Shop Scheduling Problem," Mathematics, MDPI, vol. 10(23), pages 1-30, December.
- Chang, An-Yuan, 2007. "On the measurement of routing flexibility: A multiple attribute approach," International Journal of Production Economics, Elsevier, vol. 109(1-2), pages 122-136, September.
- Hyun Cheol Lee & Chunghun Ha, 2019. "Sustainable Integrated Process Planning and Scheduling Optimization Using a Genetic Algorithm with an Integrated Chromosome Representation," Sustainability, MDPI, vol. 11(2), pages 1-23, January.
- Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2021. "Production and transport scheduling in flexible job shop manufacturing systems," Journal of Global Optimization, Springer, vol. 79(2), pages 463-502, February.
- Husam Suleiman, 2022. "A Cost-Aware Framework for QoS-Based and Energy-Efficient Scheduling in Cloud–Fog Computing," Future Internet, MDPI, vol. 14(11), pages 1-21, November.
More about this item
Keywords
Flexible job shop scheduling; Multi-agent system; Reinforcement learning; Graph convolutional network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:1:d:10.1007_s10845-022-02037-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.