IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v238y2024i4p704-717.html
   My bibliography  Save this article

System reliability evaluation and dynamic optimization based on an improved reliability block diagram

Author

Listed:
  • Liu Tianyu
  • Pan Zhengqiang
  • Song Guopeng

Abstract

Reliability block diagram (RBD) is an effective tool for modeling and evaluating system reliability. During operation, a system’s reliability may decrease significantly due to the failure of certain critical nodes and thus should be reconfigured. This paper presents a framework for system reliability evaluation and dynamic optimization based on RBD, designed from the perspective of system users. First, we improve the classic RBD model with a new encoding scheme and develop an accurate RBD computation algorithm that is easily recognized by computers and highly efficient. Second, we create an optimization algorithm based on Tabu Search to reconfigure the system after node failure, striking a balance between system reliability recovery and RBD variation amplitude. Finally, we provide some numerical examples and a computational experiment based on a practical instance from a navy fleet to demonstrate the correctness and effectiveness of our proposed methods.

Suggested Citation

  • Liu Tianyu & Pan Zhengqiang & Song Guopeng, 2024. "System reliability evaluation and dynamic optimization based on an improved reliability block diagram," Journal of Risk and Reliability, , vol. 238(4), pages 704-717, August.
  • Handle: RePEc:sae:risrel:v:238:y:2024:i:4:p:704-717
    DOI: 10.1177/1748006X231183196
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X231183196
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X231183196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hongbin Liu & Guopeng Song & Tianyu Liu & Bo Guo, 2022. "Multitask Emergency Logistics Planning under Multimodal Transportation," Mathematics, MDPI, vol. 10(19), pages 1-25, October.
    2. Gülpınar, Nalan & Çanakoğlu, Ethem & Branke, Juergen, 2018. "Heuristics for the stochastic dynamic task-resource allocation problem with retry opportunities," European Journal of Operational Research, Elsevier, vol. 266(1), pages 291-303.
    3. Li, Xinyu & Gao, Liang, 2016. "An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 174(C), pages 93-110.
    4. Vasilyev, A. & Andrews, J. & Dunnett, S.J. & Jackson, L.M., 2021. "Dynamic Reliability Assessment of PEM Fuel Cell Systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dung-Ying Lin & Tzu-Yun Huang, 2021. "A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
    2. Meghan Shanks & Ge Yu & Sheldon H. Jacobson, 2023. "Approximation algorithms for stochastic online matching with reusable resources," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 43-56, August.
    3. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    4. Zuo, Jian & Cadet, Catherine & Li, Zhongliang & Bérenguer, Christophe & Outbib, Rachid, 2024. "A deterioration-aware energy management strategy for the lifetime improvement of a multi-stack fuel cell system subject to a random dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Wang, Shunli & Wu, Fan & Takyi-Aninakwa, Paul & Fernandez, Carlos & Stroe, Daniel-Ioan & Huang, Qi, 2023. "Improved singular filtering-Gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-curren," Energy, Elsevier, vol. 284(C).
    6. Lu Sun & Lin Lin & Haojie Li & Mitsuo Gen, 2019. "Cooperative Co-Evolution Algorithm with an MRF-Based Decomposition Strategy for Stochastic Flexible Job Shop Scheduling," Mathematics, MDPI, vol. 7(4), pages 1-20, March.
    7. An, Youjun & Chen, Xiaohui & Hu, Jiawen & Zhang, Lin & Li, Yinghe & Jiang, Junwei, 2022. "Joint optimization of preventive maintenance and production rescheduling with new machine insertion and processing speed selection," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    8. Eapen, Deepa Elizabeth & Suresh, Resmi & Patil, Sairaj & Rengaswamy, Raghunathan, 2021. "A systems engineering perspective on electrochemical energy technologies and a framework for application driven choice of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Ahmet Silav & Esra Karasakal & Orhan Karasakal, 2022. "Bi-objective dynamic weapon-target assignment problem with stability measure," Annals of Operations Research, Springer, vol. 311(2), pages 1229-1247, April.
    10. Mohamed Habib Zahmani & Baghdad Atmani, 2021. "Multiple dispatching rules allocation in real time using data mining, genetic algorithms, and simulation," Journal of Scheduling, Springer, vol. 24(2), pages 175-196, April.
    11. Xiaoqiu Shi & Wei Long & Yanyan Li & Dingshan Deng, 2020. "Multi-population genetic algorithm with ER network for solving flexible job shop scheduling problems," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-23, May.
    12. Xuan Jing & Xifan Yao & Min Liu & Jiajun Zhou, 2024. "Multi-agent reinforcement learning based on graph convolutional network for flexible job shop scheduling," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 75-93, January.
    13. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.
    14. D'Urso, Diego & Chiacchio, Ferdinando & Cavalieri, Salvatore & Gambadoro, Salvatore & Khodayee, Soheyl Moheb, 2024. "Predictive maintenance of standalone steel industrial components powered by a dynamic reliability digital twin model with artificial intelligence," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Thul, Lawrence & Powell, Warren, 2023. "Stochastic optimization for vaccine and testing kit allocation for the COVID-19 pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 325-338.
    16. Hyun Cheol Lee & Chunghun Ha, 2019. "Sustainable Integrated Process Planning and Scheduling Optimization Using a Genetic Algorithm with an Integrated Chromosome Representation," Sustainability, MDPI, vol. 11(2), pages 1-23, January.
    17. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    18. Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2021. "Production and transport scheduling in flexible job shop manufacturing systems," Journal of Global Optimization, Springer, vol. 79(2), pages 463-502, February.
    19. Husam Suleiman, 2022. "A Cost-Aware Framework for QoS-Based and Energy-Efficient Scheduling in Cloud–Fog Computing," Future Internet, MDPI, vol. 14(11), pages 1-21, November.
    20. Heng Zhang & Zhongyong Liu & Weilai Liu & Lei Mao, 2022. "Diagnosing Improper Membrane Water Content in Proton Exchange Membrane Fuel Cell Using Two-Dimensional Convolutional Neural Network," Energies, MDPI, vol. 15(12), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:4:p:704-717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.