IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v59y2021i11p3360-3377.html
   My bibliography  Save this article

Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning

Author

Listed:
  • Junyoung Park
  • Jaehyeong Chun
  • Sang Hun Kim
  • Youngkook Kim
  • Jinkyoo Park

Abstract

We propose a framework to learn to schedule a job-shop problem (JSSP) using a graph neural network (GNN) and reinforcement learning (RL). We formulate the scheduling process of JSSP as a sequential decision-making problem with graph representation of the state to consider the structure of JSSP. In solving the formulated problem, the proposed framework employs a GNN to learn that node features that embed the spatial structure of the JSSP represented as a graph (representation learning) and derive the optimum scheduling policy that maps the embedded node features to the best scheduling action (policy learning). We employ Proximal Policy Optimization (PPO) based RL strategy to train these two modules in an end-to-end fashion. We empirically demonstrate that the GNN scheduler, due to its superb generalization capability, outperforms practically favoured dispatching rules and RL-based schedulers on various benchmark JSSP. We also confirmed that the proposed framework learns a transferable scheduling policy that can be employed to schedule a completely new JSSP (in terms of size and parameters) without further training.

Suggested Citation

  • Junyoung Park & Jaehyeong Chun & Sang Hun Kim & Youngkook Kim & Jinkyoo Park, 2021. "Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning," International Journal of Production Research, Taylor & Francis Journals, vol. 59(11), pages 3360-3377, June.
  • Handle: RePEc:taf:tprsxx:v:59:y:2021:i:11:p:3360-3377
    DOI: 10.1080/00207543.2020.1870013
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1870013
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1870013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aykut Uzunoglu & Christian Gahm & Axel Tuma, 2024. "A machine learning enhanced multi-start heuristic to efficiently solve a serial-batch scheduling problem," Annals of Operations Research, Springer, vol. 338(1), pages 407-428, July.
    2. Jie Fang & Yunqing Rao & Qiang Luo & Jiatai Xu, 2023. "Solving One-Dimensional Cutting Stock Problems with the Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    3. Kandula, Shanthan & Krishnamoorthy, Srikumar & Roy, Debjit, 2021. "Learning to Play the Box-Sizing Game: A Machine Learning Approach for Solving the E-commerce Packaging Problem," IIMA Working Papers WP 2021-11-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    4. Xuan Jing & Xifan Yao & Min Liu & Jiajun Zhou, 2024. "Multi-agent reinforcement learning based on graph convolutional network for flexible job shop scheduling," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 75-93, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:59:y:2021:i:11:p:3360-3377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.