IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i6d10.1007_s10845-022-01967-4.html
   My bibliography  Save this article

A nesting optimization method based on digital contour similarity matching for additive manufacturing

Author

Listed:
  • Yizhe Yang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Bingshan Liu

    (Chinese Academy of Sciences)

  • Haochen Li

    (Chinese Academy of Sciences)

  • Xin Li

    (Chinese Academy of Sciences)

  • Gong Wang

    (Chinese Academy of Sciences)

  • Shan Li

    (Chinese Academy of Sciences)

Abstract

Additive manufacturing (AM) technology uses the layer-by-layer stacking method to print parts, which simplifies the process of complex parts. The requirements for batch printing in AM are continuously growing now. In order to improve the economic and time efficiency of AM, the printing layout needs to be optimized. However, considering the diversity of part construction directions and accuracy requirements, as well as the limitations of time and materials, the printing layout still lacks comprehensive optimization models and methods, and the existing placement algorithms have not effectively utilized the holes inside parts and gaps between parts. In this paper, a comprehensive weighted general optimization model for 2D nesting is proposed to maximize time and economic benefits in AM. Moreover, a contour similarity matching method based on chain code for part placement is proposed to solve the problems about utilizing holes and gaps for the compact layout, and the approximate optimal solution is obtained by integrating annealing evolution algorithm. Experiments are conducted to verify the effectiveness of the proposed algorithm for regular geometry and real-world part layout.

Suggested Citation

  • Yizhe Yang & Bingshan Liu & Haochen Li & Xin Li & Gong Wang & Shan Li, 2023. "A nesting optimization method based on digital contour similarity matching for additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2825-2847, August.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:6:d:10.1007_s10845-022-01967-4
    DOI: 10.1007/s10845-022-01967-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01967-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01967-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Terashima-Marín & P. Ross & C. Farías-Zárate & E. López-Camacho & M. Valenzuela-Rendón, 2010. "Generalized hyper-heuristics for solving 2D Regular and Irregular Packing Problems," Annals of Operations Research, Springer, vol. 179(1), pages 369-392, September.
    2. Berman, Barry, 2012. "3-D printing: The new industrial revolution," Business Horizons, Elsevier, vol. 55(2), pages 155-162.
    3. Jakobs, Stefan, 1996. "On genetic algorithms for the packing of polygons," European Journal of Operational Research, Elsevier, vol. 88(1), pages 165-181, January.
    4. Luiz J.P. Araújo & Ender Özcan & Jason A.D. Atkin & Martin Baumers, 2019. "Analysis of irregular three-dimensional packing problems in additive manufacturing: a new taxonomy and dataset," International Journal of Production Research, Taylor & Francis Journals, vol. 57(18), pages 5920-5934, September.
    5. Jianming Zhang & Xifan Yao & Yun Li, 2020. "Improved evolutionary algorithm for parallel batch processing machine scheduling in additive manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 58(8), pages 2263-2282, April.
    6. Donald Jones, 2014. "A fully general, exact algorithm for nesting irregular shapes," Journal of Global Optimization, Springer, vol. 59(2), pages 367-404, July.
    7. A. S. Gogate & S. S. Pande, 2008. "Intelligent layout planning for rapid prototyping," International Journal of Production Research, Taylor & Francis Journals, vol. 46(20), pages 5607-5631, January.
    8. Gebler, Malte & Schoot Uiterkamp, Anton J.M. & Visser, Cindy, 2014. "A global sustainability perspective on 3D printing technologies," Energy Policy, Elsevier, vol. 74(C), pages 158-167.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose M. Framinan & Paz Perez-Gonzalez & Victor Fernandez-Viagas, 2023. "An overview on the use of operations research in additive manufacturing," Annals of Operations Research, Springer, vol. 322(1), pages 5-40, March.
    2. Gahm, Christian & Uzunoglu, Aykut & Wahl, Stefan & Ganschinietz, Chantal & Tuma, Axel, 2022. "Applying machine learning for the anticipation of complex nesting solutions in hierarchical production planning," European Journal of Operational Research, Elsevier, vol. 296(3), pages 819-836.
    3. Francesco Cappa & Fausto Del Sette & Darren Hayes & Federica Rosso, 2016. "How to Deliver Open Sustainable Innovation: An Integrated Approach for a Sustainable Marketable Product," Sustainability, MDPI, vol. 8(12), pages 1-14, December.
    4. Florinda Matos & Radu Godina & Celeste Jacinto & Helena Carvalho & Inês Ribeiro & Paulo Peças, 2019. "Additive Manufacturing: Exploring the Social Changes and Impacts," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    5. Yizhe Yang & Bingshan Liu & Haochen Li & Xin Li & Xiaodong Liu & Gong Wang, 2023. "Automatic selection system of the building orientation based on double-layer priority aggregation multi-attribute decision-making," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2477-2493, June.
    6. Jaya Priyadarshini & Rajesh Kr Singh & Ruchi Mishra & Surajit Bag, 2022. "Investigating the interaction of factors for implementing additive manufacturing to build an antifragile supply chain: TISM-MICMAC approach," Operations Management Research, Springer, vol. 15(1), pages 567-588, June.
    7. Ghobadian, Abby & Talavera, Irene & Bhattacharya, Arijit & Kumar, Vikas & Garza-Reyes, Jose Arturo & O'Regan, Nicholas, 2020. "Examining legitimatisation of additive manufacturing in the interplay between innovation, lean manufacturing and sustainability," International Journal of Production Economics, Elsevier, vol. 219(C), pages 457-468.
    8. Naghshineh, Bardia & Ribeiro, André & Jacinto, Celeste & Carvalho, Helena, 2021. "Social impacts of additive manufacturing: A stakeholder-driven framework," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    9. Birtchnell, Thomas & Böhme, Tillmann & Gorkin, Robert, 2017. "3D printing and the third mission: The university in the materialization of intellectual capital," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 240-249.
    10. Inês Ribeiro & Florinda Matos & Celeste Jacinto & Hafiz Salman & Gonçalo Cardeal & Helena Carvalho & Radu Godina & Paulo Peças, 2020. "Framework for Life Cycle Sustainability Assessment of Additive Manufacturing," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    11. Chan, Hing Kai & Griffin, James & Lim, Jia Jia & Zeng, Fangli & Chiu, Anthony S.F., 2018. "The impact of 3D Printing Technology on the supply chain: Manufacturing and legal perspectives," International Journal of Production Economics, Elsevier, vol. 205(C), pages 156-162.
    12. Kim, Juram & Kim, Seungho & Lee, Changyong, 2019. "Anticipating technological convergence: Link prediction using Wikipedia hyperlinks," Technovation, Elsevier, vol. 79(C), pages 25-34.
    13. Lastra-Díaz, Juan J. & Ortuño, M. Teresa, 2024. "Mixed-integer programming models for irregular strip packing based on vertical slices and feasibility cuts," European Journal of Operational Research, Elsevier, vol. 313(1), pages 69-91.
    14. Caviggioli, Federico & Ughetto, Elisa, 2019. "A bibliometric analysis of the research dealing with the impact of additive manufacturing on industry, business and society," International Journal of Production Economics, Elsevier, vol. 208(C), pages 254-268.
    15. Igor Kierkosz & Maciej Łuczak, 2019. "A one-pass heuristic for nesting problems," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(1), pages 37-60.
    16. Sato, André Kubagawa & Martins, Thiago Castro & Gomes, Antonio Miguel & Tsuzuki, Marcos Sales Guerra, 2019. "Raster penetration map applied to the irregular packing problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 657-671.
    17. Holzmann, Patrick & Breitenecker, Robert J. & Schwarz, Erich J. & Gregori, Patrick, 2020. "Business model design for novel technologies in nascent industries: An investigation of 3D printing service providers," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    18. Josip Maric & Florence Rodhain & Yves Barlette, 2016. "Frugal innovations and 3D printing: insights from the field," Post-Print hal-01412871, HAL.
    19. Rayna, Thierry & Striukova, Ludmila, 2021. "Assessing the effect of 3D printing technologies on entrepreneurship: An exploratory study," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    20. Jiang, Ruth & Kleer, Robin & Piller, Frank T., 2017. "Predicting the future of additive manufacturing: A Delphi study on economic and societal implications of 3D printing for 2030," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 84-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:6:d:10.1007_s10845-022-01967-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.