IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i3d10.1007_s10845-021-01836-6.html
   My bibliography  Save this article

Probabilistic predictive control of porosity in laser powder bed fusion

Author

Listed:
  • Paromita Nath

    (Vanderbilt University)

  • Sankaran Mahadevan

    (Vanderbilt University)

Abstract

This work presents a Bayesian methodology for layer-by-layer predictive quality control of an additively manufactured part by integrating physics-based simulation with online monitoring data. The model and the sensor data are first used to infer porosity in the printed layers, prediction of porosity in future layers, and adjustment of process parameters. Since porosity is not directly observable during the printing process, the temperature profile obtained from the monitoring (using an infra-red thermal camera) is used to infer porosity in the finished part. The porosity inference model is constructed by first reducing the dimension of the thermal images by employing singular value decomposition. Next, in process control, the porosity in the final part is predicted, and if this predicted porosity is more than a desired threshold, the process parameters for printing the next layer are adjusted based on optimization. To ensure that the prediction model is both fast and accurate, the expensive finite element model is replaced by a surrogate model, and a discrepancy term calibrated using experimental data is used to correct the surrogate model prediction. The prediction model is also updated at every layer based on the monitoring data, and the updated model is used to predict the porosity in the final part. The effectiveness of the proposed method is demonstrated for controlling porosity in laser powder bed fusion by changing the process parameters such as laser power and laser speed.

Suggested Citation

  • Paromita Nath & Sankaran Mahadevan, 2023. "Probabilistic predictive control of porosity in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1085-1103, March.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:3:d:10.1007_s10845-021-01836-6
    DOI: 10.1007/s10845-021-01836-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01836-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01836-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    2. Aiden A. Martin & Nicholas P. Calta & Saad A. Khairallah & Jenny Wang & Phillip J. Depond & Anthony Y. Fong & Vivek Thampy & Gabe M. Guss & Andrew M. Kiss & Kevin H. Stone & Christopher J. Tassone & J, 2019. "Dynamics of pore formation during laser powder bed fusion additive manufacturing," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Masoumeh Aminzadeh & Thomas R. Kurfess, 2019. "Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2505-2523, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    2. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    3. Yong Ren & Qian Wang, 2022. "Gaussian-process based modeling and optimal control of melt-pool geometry in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2239-2256, December.
    4. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    5. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    6. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    7. Yuan, Jun & Ng, Szu Hui, 2013. "A sequential approach for stochastic computer model calibration and prediction," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 273-286.
    8. Edward Boone & Jan Hannig & Ryad Ghanam & Sujit Ghosh & Fabrizio Ruggeri & Serge Prudhomme, 2022. "Model Validation of a Single Degree-of-Freedom Oscillator: A Case Study," Stats, MDPI, vol. 5(4), pages 1-17, November.
    9. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    10. Campbell, Katherine, 2006. "Statistical calibration of computer simulations," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1358-1363.
    11. Perrin, G., 2016. "Active learning surrogate models for the conception of systems with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 130-136.
    12. Antony M. Overstall & David C. Woods, 2016. "Multivariate emulation of computer simulators: model selection and diagnostics with application to a humanitarian relief model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 483-505, August.
    13. Na, Wei & Wang, Mingming, 2022. "A Bayesian approach with urban-scale energy model to calibrate building energy consumption for space heating: A case study of application in Beijing," Energy, Elsevier, vol. 247(C).
    14. Andrew White & Malachi Tolman & Howard D Thames & Hubert Rodney Withers & Kathy A Mason & Mark K Transtrum, 2016. "The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    15. MacKenzie, Cameron A. & Hu, Chao, 2019. "Decision making under uncertainty for design of resilient engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    16. Huang, Xucong & Peng, Zhaoqin & Tang, Diyin & Chen, Juan & Zio, Enrico & Zheng, Zaiping, 2024. "A physics-informed autoencoder for system health state assessment based on energy-oriented system performance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    17. Pasanisi, Alberto & Keller, Merlin & Parent, Eric, 2012. "Estimation of a quantity of interest in uncertainty analysis: Some help from Bayesian decision theory," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 93-101.
    18. White, Staci A. & Herbei, Radu, 2015. "A Monte Carlo approach to quantifying model error in Bayesian parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 168-181.
    19. Jun Yuan & Haowei Wang & Szu Hui Ng & Victor Nian, 2020. "Ship Emission Mitigation Strategies Choice Under Uncertainty," Energies, MDPI, vol. 13(9), pages 1-20, May.
    20. Merle, X. & Cinnella, P., 2019. "Robust prediction of dense gas flows under uncertain thermodynamic models," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 400-421.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:3:d:10.1007_s10845-021-01836-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.