IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i1d10.1007_s10845-022-01990-5.html
   My bibliography  Save this article

Instant flow distribution network optimization in liquid composite molding using deep reinforcement learning

Author

Listed:
  • Martin Szarski

    (Monash University)

  • Sunita Chauhan

    (Monash University)

Abstract

Carbon fibre reinforced plastic (CFRP) manufacturing cycle time is a major driver of production rate and cost for aerospace manufacturers. In vacuum assisted resin transfer molding (VARTM) where liquid thermoset resin is infused into dry carbon reinforcement under vacuum pressure, the design of a resin distribution network to minimize fill time while ensuring the preform is completely full of resin is critical to achieving acceptable quality and cycle time. Complex resin distribution networks in aerospace composites increase the need for quick, optimized virtual design feedback. Framing the problem flow media placement in terms of reinforcement learning, we train a deep neural network agent using a 3D Finite Element based process model of resin flow in dry carbon preforms. Our agent learns to place flow media on thin laminates in order to avoid resin starvation and reduce total infusion time. Due to the knowledge the agent has gained during training on a variety of thin laminate geometries, when presented with a new thin laminate geometry it is able to propose a good flow media layout in less than a second. On a realistic aerospace part with a complex 12-dimensional flow media network, we demonstrate our method reduces fill time by 32% when compared to an expert designed placement, while maintaining the same fill quality.

Suggested Citation

  • Martin Szarski & Sunita Chauhan, 2023. "Instant flow distribution network optimization in liquid composite molding using deep reinforcement learning," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 197-218, January.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:1:d:10.1007_s10845-022-01990-5
    DOI: 10.1007/s10845-022-01990-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01990-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01990-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    2. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    2. Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.
    3. Taejong Joo & Hyunyoung Jun & Dongmin Shin, 2022. "Task Allocation in Human–Machine Manufacturing Systems Using Deep Reinforcement Learning," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    4. Oleh Lukianykhin & Tetiana Bogodorova, 2021. "Voltage Control-Based Ancillary Service Using Deep Reinforcement Learning," Energies, MDPI, vol. 14(8), pages 1-22, April.
    5. Zhimian Chen & Yizeng Wang & Hao Hu & Zhipeng Zhang & Chengwei Zhang & Shukun Zhou, 2024. "Investigating Autonomous Vehicle Driving Strategies in Highway Ramp Merging Zones," Mathematics, MDPI, vol. 12(23), pages 1-22, December.
    6. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    7. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    8. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    9. Jesús Fernández-Villaverde & Galo Nuño & Jesse Perla, 2024. "Taming the Curse of Dimensionality: Quantitative Economics with Deep Learning," NBER Working Papers 33117, National Bureau of Economic Research, Inc.
    10. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    11. Hamed Khalili, 2024. "Deep Learning Pricing of Processing Firms in Agricultural Markets," Agriculture, MDPI, vol. 14(5), pages 1-14, April.
    12. repec:zib:zbjtin:v:3:y:2023:i:1:p:01-05 is not listed on IDEAS
    13. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    14. Chengmin Zhou & Bingding Huang & Pasi Fränti, 2022. "A review of motion planning algorithms for intelligent robots," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 387-424, February.
    15. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    16. Yingfei Wang & Inbal Yahav & Balaji Padmanabhan, 2024. "Smart Testing with Vaccination: A Bandit Algorithm for Active Sampling for Managing COVID-19," Information Systems Research, INFORMS, vol. 35(1), pages 120-144, March.
    17. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    18. Esmaeili Aliabadi, Danial & Chan, Katrina, 2022. "The emerging threat of artificial intelligence on competition in liberalized electricity markets: A deep Q-network approach," Applied Energy, Elsevier, vol. 325(C).
    19. Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.
    20. Ding, Jianpeng & Lei, Youming & Xie, Jianfei & Small, Michael, 2024. "Chaos synchronization of two coupled map lattice systems using safe reinforcement learning," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    21. Bo Hu & Jiaxi Li & Shuang Li & Jie Yang, 2019. "A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR," Energies, MDPI, vol. 12(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:1:d:10.1007_s10845-022-01990-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.