IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i8d10.1007_s10845-021-01784-1.html
   My bibliography  Save this article

A novel hypergraph convolution network-based approach for predicting the material removal rate in chemical mechanical planarization

Author

Listed:
  • Liqiao Xia

    (The Hong Kong Polytechnic University)

  • Pai Zheng

    (The Hong Kong Polytechnic University)

  • Xiao Huang

    (The Hong Kong Polytechnic University)

  • Chao Liu

    (The Hong Kong Polytechnic University)

Abstract

The material removal rate (MRR) plays a critical role in the chemical mechanical planarization (CMP) process in the semiconductor industry. Many physics-based and data-driven approaches have been proposed to-date to predict the MRR. Nevertheless, most of them neglect the underlying equipment structure containing essential interaction mechanisms among different components. To fill the gap, this paper proposes a novel hypergraph convolution network (HGCN) based approach for predicting MRR in the CMP process. The main contributions include: (1) a generic hypergraph model to represent the interrelationships of complex equipment; and (2) a temporal-based prediction approach to learn the complex data correlation and high-order representation based on the hypergraph. To validate the effectiveness of the proposed approach, a case study is conducted by comparing with other cutting-edge models, of which it outperforms in several metrics. It is envisioned that this research can also bring insightful knowledge to similar scenarios in the manufacturing process.

Suggested Citation

  • Liqiao Xia & Pai Zheng & Xiao Huang & Chao Liu, 2022. "A novel hypergraph convolution network-based approach for predicting the material removal rate in chemical mechanical planarization," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2295-2306, December.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:8:d:10.1007_s10845-021-01784-1
    DOI: 10.1007/s10845-021-01784-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01784-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01784-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ki Bum Lee & Chang Ouk Kim, 2020. "Recurrent feature-incorporated convolutional neural network for virtual metrology of the chemical mechanical planarization process," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 73-86, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    2. Yupeng Wei & Dazhong Wu, 2024. "Material removal rate prediction in chemical mechanical planarization with conditional probabilistic autoencoder and stacking ensemble learning," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 115-127, January.
    3. Jeongsub Choi & Mengmeng Zhu & Jihoon Kang & Myong K. Jeong, 2024. "Convolutional neural network based multi-input multi-output model for multi-sensor multivariate virtual metrology in semiconductor manufacturing," Annals of Operations Research, Springer, vol. 339(1), pages 185-201, August.
    4. Youngju Kim & Hoyeop Lee & Chang Ouk Kim, 2023. "A variational autoencoder for a semiconductor fault detection model robust to process drift due to incomplete maintenance," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 529-540, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:8:d:10.1007_s10845-021-01784-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.