IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i7d10.1007_s10845-022-01977-2.html
   My bibliography  Save this article

In-process monitoring and prediction of droplet quality in droplet-on-demand liquid metal jetting additive manufacturing using machine learning

Author

Listed:
  • Aniruddha Gaikwad

    (University of Nebraska-Lincoln)

  • Tammy Chang

    (Lawrence Livermore National Laboratory)

  • Brian Giera

    (Lawrence Livermore National Laboratory)

  • Nicholas Watkins

    (Lawrence Livermore National Laboratory)

  • Saptarshi Mukherjee

    (Lawrence Livermore National Laboratory)

  • Andrew Pascall

    (Lawrence Livermore National Laboratory)

  • David Stobbe

    (Lawrence Livermore National Laboratory)

  • Prahalada Rao

    (University of Nebraska-Lincoln
    Virginia Tech)

Abstract

In droplet-on-demand liquid metal jetting (DoD-LMJ) additive manufacturing, complex physical interactions govern the droplet characteristics, such as size, velocity, and shape. These droplet characteristics, in turn, determine the functional quality of the printed parts. Hence, to ensure repeatable and reliable part quality it is necessary to monitor and control the droplet characteristics. Existing approaches for in-situ monitoring of droplet behavior in DoD-LMJ rely on high-speed imaging sensors. The resulting high volume of droplet images acquired is computationally demanding to analyze and hinders real-time control of the process. To overcome this challenge, the objective of this work is to use time series data acquired from an in-process millimeter-wave sensor for predicting the size, velocity, and shape characteristics of droplets in DoD-LMJ process. As opposed to high-speed imaging, this sensor produces data-efficient time series signatures that allows rapid, real-time process monitoring. We devise machine learning models that use the millimeter-wave sensor data to predict the droplet characteristics. Specifically, we developed multilayer perceptron-based non-linear autoregressive models to predict the size and velocity of droplets. Likewise, a supervised machine learning model was trained to classify the droplet shape using the frequency spectrum information contained in the millimeter-wave sensor signatures. High-speed imaging data served as ground truth for model training and validation. These models captured the droplet characteristics with a statistical fidelity exceeding 90%, and vastly outperformed conventional statistical modeling approaches. Thus, this work achieves a practically viable sensing approach for real-time quality monitoring of the DoD-LMJ process, in lieu of the existing data-intensive image-based techniques.

Suggested Citation

  • Aniruddha Gaikwad & Tammy Chang & Brian Giera & Nicholas Watkins & Saptarshi Mukherjee & Andrew Pascall & David Stobbe & Prahalada Rao, 2022. "In-process monitoring and prediction of droplet quality in droplet-on-demand liquid metal jetting additive manufacturing using machine learning," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2093-2117, October.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:7:d:10.1007_s10845-022-01977-2
    DOI: 10.1007/s10845-022-01977-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01977-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01977-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastian Larsen & Paul A. Hooper, 2022. "Deep semi-supervised learning of dynamics for anomaly detection in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 457-471, February.
    2. Hanxin Hu & Ting Sun, 2022. "The Applications of Machine Learning in Accounting and Auditing Research," Springer Books, in: Cheng-Few Lee & Alice C. Lee (ed.), Encyclopedia of Finance, edition 0, chapter 89, pages 2095-2115, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuriko Nakao & Aya Ishino & Katsuhiko Kokubu & Hitoshi Okada, 2024. "Exploring visual communication in corporate sustainability reporting: Using image recognition with deep learning," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(4), pages 3210-3234, July.
    2. Jian Qin & Yipeng Wang & Jialuo Ding & Stewart Williams, 2022. "Optimal droplet transfer mode maintenance for wire + arc additive manufacturing (WAAM) based on deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2179-2191, October.
    3. Jiyoung Song & Young Chul Lee & Jeongsu Lee, 2023. "Deep generative model with time series-image encoding for manufacturing fault detection in die casting process," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3001-3014, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:7:d:10.1007_s10845-022-01977-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.