IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i5d10.1007_s10845-020-01735-2.html
   My bibliography  Save this article

A blockchain technology based trust system for cloud manufacturing

Author

Listed:
  • Reza Vatankhah Barenji

    (Hacettepe University)

Abstract

Cloud manufacturing (CM) is a new networked manufacturing model that delivers various on-demand manufacturing capabilities to the consumers from the providers. In this model, the provider and consumer never meet each other, thus “trust” is the major enabler for starting a collaboration. In another word, a user must be sure that the requested capability will not be provided with malicious results, and the provider should ensure that the payment will be made on time. In this paper, a novel Blockchain Technology (BCT)-based trust system called “Blocktrust” is proposed to address the trust problem of the CM. First, the CM framework that contains the digital firm, capability pool, and digital certificate issuing units is developed, and then, the private blocktrust peer-to-peer network is proposed and implemented based on Hyperledger fabric. Finlay, the feasibility of the blocktrust is examined under different testing scenarios. The reason for using a private network instead of the public is placing restrictions on who is allowed to participate in the network and also enjoying a network with fast transaction speed. Experiments show that the proposed blocktrust embedded CM is credible and practical.

Suggested Citation

  • Reza Vatankhah Barenji, 2022. "A blockchain technology based trust system for cloud manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1451-1465, June.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:5:d:10.1007_s10845-020-01735-2
    DOI: 10.1007/s10845-020-01735-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01735-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01735-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tianyang Li & Ting He & Zhongjie Wang & Yufeng Zhang, 2020. "SDF-GA: a service domain feature-oriented approach for manufacturing cloud service composition," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 681-702, March.
    2. Asma Talhi & Virginie Fortineau & Jean-Charles Huet & Samir Lamouri, 2019. "Ontology for cloud manufacturing based Product Lifecycle Management," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2171-2192, June.
    3. Khaqqi, Khamila Nurul & Sikorski, Janusz J. & Hadinoto, Kunn & Kraft, Markus, 2018. "Incorporating seller/buyer reputation-based system in blockchain-enabled emission trading application," Applied Energy, Elsevier, vol. 209(C), pages 8-19.
    4. Yuqian Lu & Hongqiang Wang & Xun Xu, 2019. "ManuService ontology: a product data model for service-oriented business interactions in a cloud manufacturing environment," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 317-334, January.
    5. Yingfeng Zhang & Dong Xi & Haidong Yang & Fei Tao & Zhe Wang, 2019. "Cloud manufacturing based service encapsulation and optimal configuration method for injection molding machine," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2681-2699, October.
    6. Xiaobao Zhu & Jing Shi & Fengjie Xie & Rouqi Song, 2020. "Pricing strategy and system performance in a cloud-based manufacturing system built on blockchain technology," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1985-2002, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barenji, Reza Vatankhah & Hariry, Reza Ebrahimi & Demirkol, Denizhan & Daim, Tugrul U., 2024. "Research landscape analysis for quality in Pharma 4.0 era," Technology in Society, Elsevier, vol. 76(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaobao Zhu & Jing Shi & Fengjie Xie & Rouqi Song, 2020. "Pricing strategy and system performance in a cloud-based manufacturing system built on blockchain technology," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1985-2002, December.
    2. Shiyong Yin & Jinsong Bao & Jie Zhang & Jie Li & Junliang Wang & Xiaodi Huang, 2020. "Real-time task processing for spinning cyber-physical production systems based on edge computing," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 2069-2087, December.
    3. Wei Nie & Katharina Vita & Tariq Masood, 2024. "An ontology for defining and characterizing demonstration environments," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3501-3521, October.
    4. Juan José Montero Jiménez & Rob Vingerhoeds & Bernard Grabot & Sébastien Schwartz, 2023. "An ontology model for maintenance strategy selection and assessment," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1369-1387, March.
    5. Jiatong Yu & Jiajue Wang & Taesoo Moon, 2022. "Influence of Digital Transformation Capability on Operational Performance," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    6. Golinucci, Nicolò & Tonini, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2023. "Towards BitCO2, an individual consumption-based carbon emission reduction mechanism," Energy Policy, Elsevier, vol. 183(C).
    7. Dong Yang & Qidong Liu & Jia Li & Yongji Jia, 2020. "Multi-Objective Optimization of Service Selection and Scheduling in Cloud Manufacturing Considering Environmental Sustainability," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    8. Silvia H. Bonilla & Helton R. O. Silva & Marcia Terra da Silva & Rodrigo Franco Gonçalves & José B. Sacomano, 2018. "Industry 4.0 and Sustainability Implications: A Scenario-Based Analysis of the Impacts and Challenges," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    9. Ioanna Andreoulaki & Aikaterini Papapostolou & Vangelis Marinakis, 2024. "Evaluating the Barriers to Blockchain Adoption in the Energy Sector: A Multicriteria Approach Using the Analytical Hierarchy Process for Group Decision Making," Energies, MDPI, vol. 17(6), pages 1-27, March.
    10. Yeray Mezquita & Ana Belén Gil-González & Angel Martín del Rey & Javier Prieto & Juan Manuel Corchado, 2022. "Towards a Blockchain-Based Peer-to-Peer Energy Marketplace," Energies, MDPI, vol. 15(9), pages 1-20, April.
    11. Alessandra Chiarini & Lorenzo Compagnucci, 2022. "Blockchain, Data Protection and P2P Energy Trading: A Review on Legal and Economic Challenges," Sustainability, MDPI, vol. 14(23), pages 1-20, December.
    12. Jun Wang & Qian Zhang & Xinman Lu & Rui Ma & Baoqin Yu & Huming Gao, 2022. "Emission reduction and coordination of a dynamic supply chain with green reputation," Operational Research, Springer, vol. 22(4), pages 3945-3988, September.
    13. Tao, Hu & Zhuang, Shan & Xue, Rui & Cao, Wei & Tian, Jinfang & Shan, Yuli, 2022. "Environmental Finance: An Interdisciplinary Review," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    14. Wang, Longze & Liu, Jinxin & Yuan, Rongfang & Wu, Jing & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2020. "Adaptive bidding strategy for real-time energy management in multi-energy market enhanced by blockchain," Applied Energy, Elsevier, vol. 279(C).
    15. Sharfuddin Ahmed Khan & Muhammad Shujaat Mubarik & Simonov Kusi‐Sarpong & Himanshu Gupta & Syed Imran Zaman & Mobashar Mubarik, 2022. "Blockchain technologies as enablers of supply chain mapping for sustainable supply chains," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3742-3756, December.
    16. Umar, Abdullah & Kumar, Deepak & Ghose, Tirthadip, 2022. "Blockchain-based decentralized energy intra-trading with battery storage flexibility in a community microgrid system," Applied Energy, Elsevier, vol. 322(C).
    17. Eduard Romulus Goean & Xavier Font & Yu Xiong & Susanne Becken & Jonathan L. Chenoweth & Lorenzo Fioramonti & James Higham & Amit Kumar Jaiswal & Jhuma Sadhukhan & Ya-Yen Sun & Horst Treiblmaier & Sen, 2024. "Using the Blockchain to Reduce Carbon Emissions in the Visitor Economy," Sustainability, MDPI, vol. 16(10), pages 1-11, May.
    18. Giuliano Sansone & Flavio Santalucia & Davide Viglialoro & Paolo Landoni, 2023. "Blockchain for social good and stakeholder engagement: Evidence from a case study," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(5), pages 2182-2193, September.
    19. Fangyuan Zhao & Wai Kin (Victor) Chan, 2020. "When Is Blockchain Worth It? A Case Study of Carbon Trading," Energies, MDPI, vol. 13(8), pages 1-28, April.
    20. Agime Gerbeti, 2021. "Market Mechanisms for Reducing Emissions and the Introduction of a Flexible Consumption Tax," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 161-178, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:5:d:10.1007_s10845-020-01735-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.