IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i5d10.1007_s10845-020-01732-5.html
   My bibliography  Save this article

Diagnostics of industrial equipment and faults prediction based on modified algorithms of artificial immune systems

Author

Listed:
  • Galina Samigulina

    (IICT - Institute of Information and Computing Technologies)

  • Zarina Samigulina

    (KBTU- Kazakh British Technical University)

Abstract

Nowadays, industrial enterprises are equipped with sophisticated equipment, diagnostics and prediction of the state of which is an urgent task. The article presents the developed system for diagnostics of industrial equipment based on the methodology for analyzing failure modes, their influence and the degree of AMDEC criticality (l'Analyse des Modes de Défaillances, de leurs Effets et de leur Criticité), as well as modified algorithms of artificial immune systems (AIS) on the example of real production data of TengizChevroil enterprise. The classical AMDEC model is improved by assessing the degree of criticality of equipment failures using the developed modified GWO-AIS and FPA-AIS algorithms based on gray wolf optimization and flower pollination methods. The proposed diagnostic system allows to reduce the financial risks of an enterprise associated with equipment faults by predicting possible failures, the possibility of planning maintenance, reducing the time for equipment repair and increasing the reliability of production.

Suggested Citation

  • Galina Samigulina & Zarina Samigulina, 2022. "Diagnostics of industrial equipment and faults prediction based on modified algorithms of artificial immune systems," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1433-1450, June.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:5:d:10.1007_s10845-020-01732-5
    DOI: 10.1007/s10845-020-01732-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01732-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01732-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cosmena Mahapatra & Ashish Payal & Meenu Chopra, 2020. "Swarm intelligence based centralized clustering: a novel solution," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1877-1888, December.
    2. N.R. Sakthivel & Binoy B. Nair & V. Sugumaran & Rajakumar S. Rai, 2011. "Decision support system using artificial immune recognition system for fault classification of centrifugal pump," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 3(1), pages 66-84.
    3. Qianhui Wu & Keqin Ding & Biqing Huang, 2020. "Approach for fault prognosis using recurrent neural network," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1621-1633, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    2. Saneh Lata Yadav & R. L. Ujjwal, 2021. "Mitigating congestion in wireless sensor networks through clustering and queue assistance: a survey," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2083-2098, December.
    3. Zhengyang Fan & Wanru Li & Kuo-Chu Chang, 2023. "A Bidirectional Long Short-Term Memory Autoencoder Transformer for Remaining Useful Life Estimation," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
    4. Yi Zhang & Peng Peng & Chongdang Liu & Yanyan Xu & Heming Zhang, 2022. "A sequential resampling approach for imbalanced batch process fault detection in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1057-1072, April.
    5. Yu Mo & Liang Li & Biqing Huang & Xiu Li, 2023. "Few-shot RUL estimation based on model-agnostic meta-learning," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2359-2372, June.
    6. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Xuejun Zhao & Yong Qin & Changbo He & Limin Jia, 2022. "Underdetermined blind source extraction of early vehicle bearing faults based on EMD and kernelized correlation maximization," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 185-201, January.
    8. Shanmugasivam Pillai & Prahlad Vadakkepat, 2022. "Deep learning for machine health prognostics using Kernel-based feature transformation," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1665-1680, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:5:d:10.1007_s10845-020-01732-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.