IDEAS home Printed from https://ideas.repec.org/a/ids/injdan/v3y2011i1p66-84.html
   My bibliography  Save this article

Decision support system using artificial immune recognition system for fault classification of centrifugal pump

Author

Listed:
  • N.R. Sakthivel
  • Binoy B. Nair
  • V. Sugumaran
  • Rajakumar S. Rai

Abstract

Centrifugal pumps are a crucial part of many industrial plants. Early detection of faults in pumps can increase their reliability, reduce energy consumption, service and maintenance costs, and increase their life-cycle and safety, thus resulting in a significant reduction in life-time costs. Vibration analysis is a very popular tool for condition monitoring of machinery like pumps, turbines and compressors. The proposed method is based on a novel immune inspired supervised learning algorithm which is known as artificial immune recognition system (AIRS). This paper compares the fault classification efficiency of AIRS with hybrid systems such as principle component analysis (PCA)-Naive Bayes and PCA-Bayes Net. The robustness of the proposed method is examined using its classification accuracy and kappa statistics. It is observed that the AIRS-based system outperforms the other two methods considered in the present study.

Suggested Citation

  • N.R. Sakthivel & Binoy B. Nair & V. Sugumaran & Rajakumar S. Rai, 2011. "Decision support system using artificial immune recognition system for fault classification of centrifugal pump," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 3(1), pages 66-84.
  • Handle: RePEc:ids:injdan:v:3:y:2011:i:1:p:66-84
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=38806
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galina Samigulina & Zarina Samigulina, 2022. "Diagnostics of industrial equipment and faults prediction based on modified algorithms of artificial immune systems," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1433-1450, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:injdan:v:3:y:2011:i:1:p:66-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=282 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.