IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i4p1646-d1592638.html
   My bibliography  Save this article

Optimizing Order Batching and Picking Problems Considering the Correlation Between Products Under the Scattered Storage Mode

Author

Listed:
  • Yalin Deng

    (College of Engineering, Zhejiang Normal University, Jinhua 321004, China
    Key Laboratory of Unban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China)

  • Wei Jiang

    (College of Engineering, Zhejiang Normal University, Jinhua 321004, China
    Key Laboratory of Unban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China)

  • Ye Wang

    (Zhejiang Rail Transit Operation Management Group Co., Ltd., Hangzhou 310000, China)

  • Beiling Xu

    (College of Engineering, Zhejiang Normal University, Jinhua 321004, China
    Key Laboratory of Unban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China)

Abstract

With the rapid development of e-commerce, the scattered storage mode has been widely applied in B2C distribution centers in which there is a large assortment and quantity of small-sized, time-sensitive orders. Under the scattered storage mode, obtaining high-quality batching results and quickly completing order picking are key to improving the operation efficiency of a distribution center when a large number of orders arrive in a short period. Against this background, a new order batching problem under the scattered storage mode is studied. The feature is to improve the batching quality by considering the correlation between products. The problem is formulated as a 0–1 integer programming model to maximize the sum of pair-to-pair order correlations in all batches. To solve large-scale problems, we first propose two new seed batching algorithms based on the correlation between products. The first one selects the order with the largest number of products as the seed order, and the second one selects the order with the highest correlation as the seed order. Then tabu search (TS) is used to improve these two algorithms. In addition, a new seed batching algorithm for a special situation is proposed, which needs to use the location information of each product to obtain more accurate batching results. Finally, an improved two-stage order picking algorithm is proposed to verify the actual picking effect of the batching results obtained from the different algorithms. The experimental results show that the two seed batching algorithms improved by TS are superior to the existing batching algorithms in batch quality for the general situation, and the second seed batching algorithm improved by TS performs better for large-scale problems. Moreover, the new seed batching algorithm is more efficient and effective.

Suggested Citation

  • Yalin Deng & Wei Jiang & Ye Wang & Beiling Xu, 2025. "Optimizing Order Batching and Picking Problems Considering the Correlation Between Products Under the Scattered Storage Mode," Sustainability, MDPI, vol. 17(4), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1646-:d:1592638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/4/1646/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/4/1646/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weidinger, Felix & Boysen, Nils & Schneider, Michael, 2019. "Picker routing in the mixed-shelves warehouses of e-commerce retailers," European Journal of Operational Research, Elsevier, vol. 274(2), pages 501-515.
    2. Žulj, Ivan & Kramer, Sergej & Schneider, Michael, 2018. "A hybrid of adaptive large neighborhood search and tabu search for the order-batching problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 653-664.
    3. Yavuz A. Bozer & Francisco J. Aldarondo, 2018. "A simulation-based comparison of two goods-to-person order picking systems in an online retail setting," International Journal of Production Research, Taylor & Francis Journals, vol. 56(11), pages 3838-3858, June.
    4. Chen, Tzu-Li & Cheng, Chen-Yang & Chen, Yin-Yann & Chan, Li-Kai, 2015. "An efficient hybrid algorithm for integrated order batching, sequencing and routing problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 158-167.
    5. Makusee Masae & Christoph H. Glock & Panupong Vichitkunakorn, 2020. "Optimal order picker routing in the chevron warehouse," IISE Transactions, Taylor & Francis Journals, vol. 52(6), pages 665-687, June.
    6. Gámez Albán, Harol Mauricio & Cornelissens, Trijntje & Sörensen, Kenneth, 2024. "A new policy for scattered storage assignment to minimize picking travel distances," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1006-1020.
    7. İbrahim Muter & Temel Öncan, 2022. "Order batching and picker scheduling in warehouse order picking," IISE Transactions, Taylor & Francis Journals, vol. 54(5), pages 435-447, May.
    8. Weidinger, Felix & Boysen, Nils & Schneider, Michael, 2019. "Picker routing in the mixed-shelves warehouses of e-commerce retailers," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126182, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    9. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    10. Henn, Sebastian & Wäscher, Gerhard, 2012. "Tabu search heuristics for the order batching problem in manual order picking systems," European Journal of Operational Research, Elsevier, vol. 222(3), pages 484-494.
    11. Youhua Chen & Hongjie Lan & Chuan Wang & Xiaoqiong Jia & Laxminarayan Sahoo, 2022. "Integrated Online Order Picking and Vehicle Routing of Food Cold Chain with Demand Surge," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-14, July.
    12. Žulj, Ivan & Salewski, Hagen & Goeke, Dominik & Schneider, Michael, 2022. "Order batching and batch sequencing in an AMR-assisted picker-to-parts system," European Journal of Operational Research, Elsevier, vol. 298(1), pages 182-201.
    13. Moaad Abdulaziz Alrasheed & Ateekh Ur Rehman & Ibrahim M. Alharkan, 2024. "Developing an Efficient Model for Online Grocery Order Fulfillment," Sustainability, MDPI, vol. 16(10), pages 1-24, May.
    14. Weidinger, Felix, 2018. "Picker routing in rectangular mixed shelves warehouses," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126186, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. Parikh, Pratik J. & Meller, Russell D., 2008. "Selecting between batch and zone order picking strategies in a distribution center," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 696-719, September.
    16. Weidinger, Felix & Boysen, Nils, 2018. "Scattered Storage: How to Distribute Stock Keeping Units All Around a Mixed-Shelves Warehouse," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126188, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    17. Ning Yang & Francisco Rossomando, 2022. "Evaluation of the Joint Impact of the Storage Assignment and Order Batching in Mobile-Pod Warehouse Systems," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-13, April.
    18. Yang, Peng & Zhao, Zhijie & Guo, Huijie, 2020. "Order batch picking optimization under different storage scenarios for e-commerce warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    19. Jianbin Li & Rihuan Huang & James B. Dai, 2017. "Joint optimisation of order batching and picker routing in the online retailer’s warehouse in China," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 447-461, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    2. Yang, Peng & Zhao, Zhijie & Guo, Huijie, 2020. "Order batch picking optimization under different storage scenarios for e-commerce warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    3. Xie, Lin & Li, Hanyi & Luttmann, Laurin, 2023. "Formulating and solving integrated order batching and routing in multi-depot AGV-assisted mixed-shelves warehouses," European Journal of Operational Research, Elsevier, vol. 307(2), pages 713-730.
    4. Shandong Mou, 2022. "Integrated Order Picking and Multi-Skilled Picker Scheduling in Omni-Channel Retail Stores," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    5. Kaibo Liang & Li Zhou & Jianglong Yang & Huwei Liu & Yakun Li & Fengmei Jing & Man Shan & Jin Yang, 2023. "Research on a Dynamic Task Update Assignment Strategy Based on a “Parts to Picker” Picking System," Mathematics, MDPI, vol. 11(7), pages 1-29, March.
    6. Boysen, Nils & de Koster, René, 2025. "50 years of warehousing research—An operations research perspective," European Journal of Operational Research, Elsevier, vol. 320(3), pages 449-464.
    7. Arbex Valle, Cristiano & Beasley, John E, 2020. "Order batching using an approximation for the distance travelled by pickers," European Journal of Operational Research, Elsevier, vol. 284(2), pages 460-484.
    8. Onal, Sevilay & Zhu, Wen & Das, Sanchoy, 2023. "Order picking heuristics for online order fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 256(C).
    9. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    10. Ahmad Ebrahimi & Hyun-woo Jeon & Sang-yeop Jung, 2023. "Improving Energy Consumption and Order Tardiness in Picker-to-Part Warehouses with Electric Forklifts: A Comparison of Four Evolutionary Algorithms," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    11. Laura Korbacher & Katrin Heßler & Stefan Irnich, 2023. "The Single Picker Routing Problem with Scattered Storage: Modeling and Evaluation of Routing and Storage Policies," Working Papers 2302, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    12. Pardo, Eduardo G. & Gil-Borrás, Sergio & Alonso-Ayuso, Antonio & Duarte, Abraham, 2024. "Order batching problems: Taxonomy and literature review," European Journal of Operational Research, Elsevier, vol. 313(1), pages 1-24.
    13. Gámez Albán, Harol Mauricio & Cornelissens, Trijntje & Sörensen, Kenneth, 2024. "A new policy for scattered storage assignment to minimize picking travel distances," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1006-1020.
    14. Maximilian Schiffer & Nils Boysen & Patrick S. Klein & Gilbert Laporte & Marco Pavone, 2022. "Optimal Picking Policies in E-Commerce Warehouses," Management Science, INFORMS, vol. 68(10), pages 7497-7517, October.
    15. Katrin Heßler & Stefan Irnich, 2024. "Exact Solution of the Single-Picker Routing Problem with Scattered Storage," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1417-1435, December.
    16. Katrin Heßler & Stefan Irnich, 2023. "Exact Solution of the Single Picker Routing Problem with Scattered Storage," Working Papers 2303, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    17. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    18. David Füßler & Nils Boysen & Konrad Stephan, 2019. "Trolley line picking: storage assignment and order sequencing to increase picking performance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1087-1121, December.
    19. Fangyu Chen & Yongchang Wei & Hongwei Wang, 2018. "A heuristic based batching and assigning method for online customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 640-685, December.
    20. Lam, H.Y. & Ho, G.T.S. & Mo, Daniel Y. & Tang, Valerie, 2023. "Responsive pick face replenishment strategy for stock allocation to fulfil e-commerce order," International Journal of Production Economics, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1646-:d:1592638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.